Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-29T08:08:22.515Z Has data issue: false hasContentIssue false

Radiative Feedback in Galaxies

Published online by Cambridge University Press:  01 December 2007

M. S. Oey
Affiliation:
Department of Astronomy, 830 Dennison Building, University of Michigan, Ann Arbor, MI 48109-1042, U.S.A.
E. S. Voges
Affiliation:
Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003, U.S.A.
R. A. M. Walterbos
Affiliation:
Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003, U.S.A.
G. R. Meurer
Affiliation:
Johns Hopkins University, Department of Physics and Astronomy, 3400 North Charles Street, Baltimore, MD 21218-2686, U.S.A.
S. Yelda
Affiliation:
University of California, Department of Physics and Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547, U.S.A.
E. Furst
Affiliation:
344 Greenlow Road, Catonsville, MD 21228, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We examine the fate of ionizing radiation from massive stars on global scales. First, we compare the observed Hα luminosities of LMC Hii regions with those predicted by the latest generation of stellar atmosphere models. Our results imply that classical Hii regions are on average radiation-bounded, rather than density-bounded, as we found a decade ago. This is likely to necessitate an additional ionizing source for the diffuse, warm ionized medium (WIM) in galaxies. Secondly, we present new results from the SINGG Hα galaxy survey, showing that starburst galaxies have a lower fraction of WIM emission than normal star-forming galaxies. The most intriguing and consequential possible cause for this effect is the escape of ionizing radiation from starbursts. We show that the observations are also consistent with our predictions for the escape of ionizing radiation. Nevertheless, other observations do not necessarily support this scenario and other possible explanations must be considered.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bergvall, N., Zackrisson, E., Andersson, B.-G., et al. 2006, A&A, 448, 513Google Scholar
Clarke, C. J. & Oey, M. S. 2002, MNRAS, 337, 1299CrossRefGoogle Scholar
Heckman, T. M., Sembach, K. R., Meurer, G. R., et al. 2001, ApJ, 558, 56CrossRefGoogle Scholar
Hoopes, C. G., & Walterbos, R. A.M. 2000, ApJ, 541, 597CrossRefGoogle Scholar
Leitherer, C., Ferguson, H. C., Heckman, T. M., & Lowenthal, J. 1995, ApJ, 454, L19CrossRefGoogle Scholar
Martin, C. L. 2003, in: Rosenberg, J. L. & Putman, M. E. (eds.), The IGM/Galaxy Connection: The Distribution of Baryons at z=0, (Dordrecht: Kluwer), 205CrossRefGoogle Scholar
Martins, F., Schaerer, D., & Hillier, D. J. 2005, A&A, 436, 1049Google Scholar
Meurer, G. R., Hanish, D. J., Ferguson, H. C. et al. 2006, ApJS, 165, 307CrossRefGoogle Scholar
Oey, M. S., & Kennicutt, R. C. Jr., 1997, MNRAS, 291, 827CrossRefGoogle Scholar
Oey, M. S., Meurer, G. R., Yelda, S. et al. 2007, ApJ, 661, 801CrossRefGoogle Scholar
Panagia, N. 1973, AJ, 78, 929CrossRefGoogle Scholar
Schaerer, D., & de Koter, A. 1997, A&A, 322, 598Google Scholar
Shapley, A. E., Steidel, C. C., Pettini, M., et al. 2006, ApJ, 651, 688CrossRefGoogle Scholar
Smith, L. J., Norris, R. P.F., & Crowther, P. A. 2002, MNRAS, 337, 1309CrossRefGoogle Scholar
Thilker, D. A., Braun, R., & Walterbos, R. A. M., 2000, AJ, 120, 2070CrossRefGoogle Scholar
Vacca, W. D., Garmany, C. D., & Shull, J. M. 1996, ApJ, 460, 914CrossRefGoogle Scholar
Voges, E. S., Oey, M. S., Walterbos, R. A. M., & Wilkinson, T. M. 2008, AJ, submittedGoogle Scholar