Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T13:52:39.715Z Has data issue: false hasContentIssue false

Radio and Submillimeter Continuum Observations of High-Redshift Galaxies

Published online by Cambridge University Press:  21 March 2013

Wei-Hao Wang
Affiliation:
Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan email: whwang@asiaa.sinica.edu.tw
Amy J. Barger
Affiliation:
Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter Street, Madison, WI 53706, USA Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu, HI 96822, USA Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
Lennox L. Cowie
Affiliation:
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
Chian-Chou Chen
Affiliation:
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
Jonathan P. Williams
Affiliation:
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
Frazer N. Owen
Affiliation:
National Radio Astronomical Observatory, P.O. Box 0, Socorro, MN 87801, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observing galaxies in the radio and submillimeter continuum has the advantage of being unaffected by dust extinction, which is a major drawback of studying galaxy evolution using optical data. Submillimeter single-dish surveys have made tremendous progress in understanding the high-redshift dusty population, but the low angular resolution of single-dish telescopes has also hampered these studies. Our recent JCMT and SMA imaging of high-redshift submillimeter sources revealed z > 4 objects that are radio and optically faint. Such objects cannot be easily identified with the combination of submillimeter single-dish and radio imaging. We also found a large fraction of multiple objects that are blended in single-dish images. Such objects may be early-stage mergers, or dusty starbursts in group environments. Since our work, larger surveys with PdBI and ALMA have been carried out to further address these issues. Additional to submillimeter imaging, future ultradeep EVLA imaging at 20 cm can also detect large samples of ultraluminous star forming galaxies at z ≳ 2. Sensitivities in radio and submillimeter observations have different redshift and dust temperature dependencies. Radio observations are also less affected by confusion. It will be necessary to combine deep surveys in both wavebands in order to achieve a more complete picture of the evolution of high-redshift star forming galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Barger, A. J., Cowie, L. L., Sanders, D. B., Fulton, E., Taniguchi, Y., Sato, Y., Kawara, K., & Okuda, H. 1998, Nature, 394, 248CrossRefGoogle Scholar
Barger, A. J., Wang, W.-H., Cowie, L. L., Owen, F. N., Chen, C.-C., & Williams, J. P. 2012, ApJ, in press (arXiv:1209.1626)Google Scholar
Blain, A. W. & Longair, M. S. 1993, MNRAS, 264, 509CrossRefGoogle Scholar
Bourne, N., et al. 2011, MNRAS, 410, 1155Google Scholar
Casey, C. M., et al. 2012, ApJ, in press (arXiv:1210.4928)Google Scholar
Carilli, C. L., et al. 2008, ApJ, 689, 883CrossRefGoogle Scholar
Chapman, S. C., Smail, I., Blain, A. W., & Ivison, R. J. 2004, ApJ, 614, 671CrossRefGoogle Scholar
Chen, C.-C., Cowie, L. L., Wang, W.-H., Barger, A. J., & Williams, J. P. 2011, ApJ, 733, 64Google Scholar
Chen, C.-C., Cowie, L. L., Barger, A. J., Casey, C. M., Lee, N., Sanders, D. B. Wang.-H., & Williams, J. P. 2012, ApJ, submitted (arXiv:1209.4377)Google Scholar
Condon, J. J. 1992, ARA&A, 30, 575Google Scholar
Coppin, K., et al. 2006, MNRAS, 372, 1621CrossRefGoogle Scholar
Cowie, L. L., Barger, A. J., & Kneib, J.-P. 2002, AJ, 123, 2197Google Scholar
Cowie, L. L., Barger, A. J., Wang, W.-H., & Williams, J. P. 2009, ApJ, 697, L122Google Scholar
Daddi, E., Dannerbauer, H., Krips, M., Walter, F., Dickinson, M., Elbaz, D., & Morrison, G. E. 2009, ApJ, 695, L176CrossRefGoogle Scholar
Dole, H., et al. 2006, A&A, 451, 417Google Scholar
Hatsukade, B., et al. 2010, ApJ, 711, 974CrossRefGoogle Scholar
Hayward, C. C., Kereš, D., Jonsson, P., Narayanan, D., Cox, T. J, & Herquist, L. 2011, ApJ, 743, 159Google Scholar
Ho, I.-T., Wang, W.-H., Morrison, G. E., & Miller, N. A. 2010, ApJ, 722, 1051Google Scholar
Ivison, R. J., et al. 2010, MNRAS, 402, 245CrossRefGoogle Scholar
Karim, A., et al. 2012, MNRAS, submitted (arXiv:1210.0249)Google Scholar
Magnelli, B., et al. 2012, A&A, 539, 155Google Scholar
Morrison, G. E., Owen, F. N., Dickinson, M., Ivison, R. J., & Ibar, E. 2010, ApJS, 188, 178Google Scholar
Oliver, S. J., et al. 2010, A&A, 518, L21Google Scholar
Owen, F. N. & Morrison, G. E. 2008, AJ, 136, 1889CrossRefGoogle Scholar
Rodighiero, G., et al. 2011, ApJ, 739, L40Google Scholar
Smolčić, V., et al. 2012, A&A, in press (arXiv:1205.6470)Google Scholar
Walter, F., et al. 2012, Nature, 486, 233CrossRefGoogle Scholar
Wang, W.-H., Cowie, L. L., & Barger, A. J. 2004, ApJ, 613, 655CrossRefGoogle Scholar
Wang, W.-H., Cowie, L. L., van Saders, J., Barger, A. J., & Williams, J. P. 2007, ApJ, 670, L89CrossRefGoogle Scholar
Wang, W.-H., Cowie, L. L., Barger, A. J., & Williams, J. P. 2011, ApJ, 726, L18CrossRefGoogle Scholar
Wang, W.-H., Barger, A. J., & Cowie, L. L. 2012, ApJ, 744, 155Google Scholar
Younger, J. D., et al. 2007, ApJ, 671, 1531CrossRefGoogle Scholar
Younger, J. D., et al. 2009, ApJ, 704, 803CrossRefGoogle Scholar