Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T18:33:06.615Z Has data issue: false hasContentIssue false

Radio and X-ray observations of supernovae in dense environments

Published online by Cambridge University Press:  17 October 2017

Poonam Chandra*
Affiliation:
National Centre for Radio Astrophysics, Tata Institute of Fundamental Research Pune University Campus, Ganeshkhind, Pune 411 007, India email: poonam@ncra.tifr.res.in
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Here we discuss the observational properties of supernovae exploding in extremely dense environments, namely Type IIn supernovae (SNe IIn). In SNe IIn, the surrounding environments play significant role in the supernovae energetics and evolution. Thus they are different than other classes of core collapse supernovae, whose energetics are not significantly altered by their environments. Though high density of medium is a prerequisite for radio and X-ray emission, less than 10% on SNe IIn are bright in these bands. This has important implications for their progenitor models. I will discuss the radio and X-ray observations of SNe IIn, which are crucial to unravel their complex environments. We also discuss some individual supernovae belonging to this class and discuss as to how they have refined our understanding of SNe IIn. Finally the importance of well sampled long term light curves in radio and X-ray bands cannot be stressed enough.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Anderson, J. P., Habergham, S. M., James, P. A., & Hamuy, M. 2012, MNRAS, 424, 1372 Google Scholar
Bilinski, C., Smith, N., Li, W., et al. 2015, MNRAS, 450, 246 Google Scholar
Chandra, P., Stockdale, C. J., Chevalier, R. A., et al. 2009, ApJ, 690, 1839 Google Scholar
Chandra, P., Chevalier, R. A., Chugai, N., et al. 2012, ApJ, 755, 110 Google Scholar
Chandra, P., Chevalier, R. A., Irwin, C. M., et al. 2012, ApJ Letters, 750, L2 Google Scholar
Chandra, P., Chevalier, R. A., Chugai, N., Fransson, C., & Soderberg, A. M. 2015, ApJ, 810, 32 CrossRefGoogle Scholar
Chevalier, R. A. & Fransson, C. 2003, Supernovae and Gamma-Ray Bursters, Edited by Weiler, K.., Lecture Notes in Physics, 598, 171 Google Scholar
Chevalier, R. A. 2012, ApJ Letters, 752, L2 CrossRefGoogle Scholar
Chevalier, R. A. & Fransson, C. 2016, arXiv:1612.07459Google Scholar
Chugai, N. N. 1990, Soviet Astron. (Letters), 16, 457 Google Scholar
Chugai, N. N. & Chevalier, R. A. 2006, ApJ, 641, 1051 Google Scholar
Cooke, J., Sullivan, M., Barton, E. J., et al. 2009, Nature, 460, 237 CrossRefGoogle Scholar
Dwarkadas, V. V. & Gruszko, J. 2012, MNRAS, 419, 1515 Google Scholar
Dwarkadas, V. V., Romero-Cañizales, C., Reddy, R., & Bauer, F. E. 2016, MNRAS, 462, 1101 Google Scholar
Fox, O. D., Van Dyk, S. D., Dwek, E., et al. 2017, ApJ, 836, 222 Google Scholar
Fransson, C., Lundqvist, P., & Chevalier, R. A. 1996, ApJ, 461, 993 Google Scholar
Fransson, C., Ergon, M., Challis, P. J., et al. 2014, ApJ, 797, 118 Google Scholar
Gal-Yam, A., Leonard, D. C., Fox, D. B., et al. 2007, ApJ, 656, 372 CrossRefGoogle Scholar
Hoffman, J. L., Leonard, D. C., Chornock, R., et al. 2008, ApJ, 688, 11861209 Google Scholar
Leonard, D. C., Filippenko, A. V., Barth, A. J., & Matheson, T. 2000, ApJ, 536, 239 Google Scholar
Margutti, R., Milisavljevic, D., Soderberg, A. M., et al. 2014, ApJ, 780, 21 Google Scholar
Mauerhan, J. C., Smith, N., Filippenko, A. V., et al. 2013, MNRAS, 430, 1801 Google Scholar
Milisavljevic, D., Margutti, R., Kamble, A., et al. 2015, ApJ, 815, 120 Google Scholar
Nymark, T. K., Fransson, C., & Kozma, C. 2006, A&A, 449, 171 Google Scholar
Ofek, E. O., Sullivan, M., Shaviv, N. J., et al. 2014a, ApJ, 789, 104 Google Scholar
Ofek, E. O., Zoglauer, A., Boggs, S. E., et al. 2014b, ApJ, 781, 42 Google Scholar
Patat, F., Taubenberger, S., Benetti, S., Pastorello, A., & Harutyunyan, A. 2011, A&A, 527, L6 Google Scholar
Pérez-Torres, M. A., Lundqvist, P., Beswick, R. J., et al. 2014, ApJ, 792, 38 Google Scholar
Ross, M. & Dwarkadas, V. 2017, arXiv:1704.05866Google Scholar
Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444 Google Scholar
Smith, N., Li, W., Foley, R. J., et al. 2007, ApJ, 666, 1116 Google Scholar
Smith, N., Li, W., Miller, A. A., et al. 2011, ApJ, 732, 63 Google Scholar
Smith, N., Silverman, J. M., Filippenko, A. V., et al. 2012, AJ, 143, 17 Google Scholar
Smith, N. & Tombleson, R. 2015, MNRAS, 447, 598 Google Scholar
Smith, N. 2016a, arXiv:1612.02006Google Scholar
Smith, N., Andrews, J. E., & Mauerhan, J. C. 2016b, MNRAS, 463, 2904 Google Scholar
Stoll, R., Prieto, J. L., Stanek, K. Z., et al. 2011, ApJ, 730, 34 Google Scholar
Taddia, F., Stritzinger, M. D., Sollerman, J., et al. 2013, A&A, 555, A10 Google Scholar
van Dyk, S. D., Weiler, K. W., Sramek, R. A., & Panagia, N. 1993, ApJ Letters, 419, L69 CrossRefGoogle Scholar
van Dyk, S. D., Weiler, K. W., Sramek, R. A., et al. 1996, AJ, 111, 1271 Google Scholar
Wang, L., Cui, X., Zhu, H., & Tian, W. 2015, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 64Google Scholar
Weiler, K. W., Panagia, N., & Sramek, R. A. 1990, ApJ, 364, 611 Google Scholar
Williams, C. L., Panagia, N., Van Dyk, S. D., et al. 2002, ApJ, 581, 396 Google Scholar