No CrossRef data available.
Published online by Cambridge University Press: 17 October 2017
Supernova remnants (SNRs) are powerful particle accelerators. As a supernova (SN) blast wave propagates through the circumstellar medium (CSM), electrons and protons scatter across the shock and gain energy by entrapment in the magnetic field. The accelerated particles generate further magnetic field fluctuations and local amplification, leading to cosmic ray production. The wealth of data from Supernova 1987A is providing a template of the SN-CSM interaction, and an important guide to the radio detection and identification of core-collapse SNe based on their spectral properties. Thirty years after the explosion, radio observations of SNR 1987A span from 70 MHz to 700 GHz. We review extensive observing campaigns with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA), and follow-ups with other radio telescopes. Observations across the radio spectrum indicate rapid changes in the remnant morphology, while current ATCA and ALMA observations show that the SNR has entered a new evolutionary phase.