Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:22:56.712Z Has data issue: false hasContentIssue false

Rayleigh–Taylor instability in partially ionized prominence plasma

Published online by Cambridge University Press:  06 January 2014

E. Khomenko
Affiliation:
Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain email: khomenko@iac.es Departamento de Astrofísica, Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain
A. Díaz
Affiliation:
Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain email: khomenko@iac.es Departamento de Astrofísica, Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain
A. de Vicente
Affiliation:
Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain email: khomenko@iac.es Departamento de Astrofísica, Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain
M. Collados
Affiliation:
Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain email: khomenko@iac.es Departamento de Astrofísica, Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain
M. Luna
Affiliation:
Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain email: khomenko@iac.es Departamento de Astrofísica, Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study Rayleigh–Taylor instability (RTI) at the coronal–prominence boundary by means of 2.5D numerical simulations in a single-fluid MHD approach including a generalized Ohm's law. The initial configuration includes a homogeneous magnetic field forming an angle with the direction in which the plasma is perturbed. For each field inclination we compare two simulations, one for the pure MHD case, and one including the ambipolar diffusion in the Ohm's law, otherwise identical. We find that the configuration containing neutral atoms is always unstable. The growth rate of the small-scale modes in the non-linear regime is larger than in the purely MHD case.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Berger, T. E., Slater, G., Hurlburt, N., et al. 2010, ApJ, 716, 1288Google Scholar
Díaz, A. J., Khomenko, E., & Collados, M. 2013, A&AGoogle Scholar
Felipe, T., Khomenko, E., & Collados, M. 2010, ApJ, 719, 357Google Scholar
Hillier, A., Berger, T., Isobe, H., & Shibata, K. 2012, ApJ, 746, 120CrossRefGoogle Scholar
Jun, B.-I., Norman, M. L. & Stone, J. M. 1995, ApJ, 453, 332Google Scholar
Khomenko, E. & Collados, M. 2012, ApJ, 747, 87Google Scholar
Ryutova, M., Berger, T., Frank, Z., Tarbell, T., & Title, A. 2010, Solar Phys., 267, 75Google Scholar
Soler, R., Díaz, A. J., Ballester, J. L., & Goossens, M. 2012, ApJ, 749, 163CrossRefGoogle Scholar