Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T13:45:54.787Z Has data issue: false hasContentIssue false

Reconstructing the mass accretion histories of nearby red nuggets with their globular cluster systems

Published online by Cambridge University Press:  29 March 2021

Michael A. Beasley
Affiliation:
Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, E-38250, La Laguna, Tenerife, Spain email: beasley@iac.es Departamento de Astrofísica, Universidad de La Laguna, E-38205, Tenerife, Spain
Ryan Leaman
Affiliation:
Max-Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
Ignacio Trujillo
Affiliation:
Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, E-38250, La Laguna, Tenerife, Spain email: beasley@iac.es Departamento de Astrofísica, Universidad de La Laguna, E-38205, Tenerife, Spain
Mireia Montes
Affiliation:
School of Physics, University of New South Wales, 2052, Sydney, Australia
Alejandro Vazdekis
Affiliation:
Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, E-38250, La Laguna, Tenerife, Spain email: beasley@iac.es Departamento de Astrofísica, Universidad de La Laguna, E-38205, Tenerife, Spain
Núria Salvador Rusiñol
Affiliation:
Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, E-38250, La Laguna, Tenerife, Spain email: beasley@iac.es Departamento de Astrofísica, Universidad de La Laguna, E-38205, Tenerife, Spain
Elham Eftekhari
Affiliation:
Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, E-38250, La Laguna, Tenerife, Spain email: beasley@iac.es Departamento de Astrofísica, Universidad de La Laguna, E-38205, Tenerife, Spain
Anna Ferré-Mateu
Affiliation:
Institut de Ciéncies del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Barcelona 08028, Spain
Ignacio Martín-Navarro
Affiliation:
Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, E-38250, La Laguna, Tenerife, Spain email: beasley@iac.es Departamento de Astrofísica, Universidad de La Laguna, E-38205, Tenerife, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is generally recognized that massive galaxies form through a combination of in-situ collapse and ex-situ accretion. The in-situ component forms early, where gas collapse and compaction leads to the formation of massive compact systems (blue and red “nuggets”) seen at z > 1. The subsequent accretion of satellites brings in ex-situ material, growing these nuggets in size and mass to appear as the massive early-type galaxies (ETGs) we see locally. Due to stochasticity in the accretion process, in a few rare cases a red nugget will evolve to the present day having undergone little ex-situ mass accretion. The resulting massive, compact and ancient objects have been termed “relic galaxies”. Detailed stellar population and kinematic analyses are required to characterise these systems. However, an additional crucial aspect lies in determining the fraction of ex-situ mass they have accreted since their formation. Globular cluster systems can be used to constrain this fraction, since the oldest and most metal-poor globular clusters in massive galaxies are primarily an accreted, ex-situ population. Models for the formation of relic galaxies and their globular cluster systems suggest that, due to their early compaction and limited accretion of dark-matter dominated satellites, relic galaxies should have characteristically low dark-matter mass fractions compared to ETGs of the same stellar mass.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Beasley, M. A., Baugh, C. M., Forbes, D. A., et al. 2002, MNRAS, 333, 383CrossRefGoogle Scholar
Beasley, M. A., Trujillo, I., Leaman, R., et al. 2018, Nature, 555, 483 CrossRefGoogle Scholar
Behroozi, P. S., Wechsler, R. H., & Conroy, C. 2013, ApJ, 770, 57 CrossRefGoogle Scholar
Buote, D. A. & Barth, A. J. 2019, ApJ, 877, 91 CrossRefGoogle Scholar
Caon, N., Capaccioli, M., & D’Onofrio, M. 1993, MNRAS, 265, 1013 CrossRefGoogle Scholar
Cenarro, A. J., Gorgas, J., Vazdekis, A., et al. 2003, MNRAS, 339, L12 10.1046/j.1365-8711.2003.06360.xCrossRefGoogle Scholar
Ceverino, D., Dekel, A., Tweed, D., et al. 2015, MNRAS, 447, 3291 10.1093/mnras/stu2694CrossRefGoogle Scholar
Conroy, C. & van Dokkum, P. G. 2012, ApJ, 760, 71 10.1088/0004-637X/760/1/71CrossRefGoogle Scholar
Côté, P., Marzke, R. O., & West, M. J. 1998, ApJ, 501, 554 10.1086/305838CrossRefGoogle Scholar
Damjanov, I., McCarthy, P. J., Abraham, R. G., et al. 2009, ApJ, 695, 101 CrossRefGoogle Scholar
Fahrion, K., Lyubenova, M., Hilker, M., et al. 2020, A&A, 637, A27 Google Scholar
Ferré-Mateu, A., Trujillo, I., Martín-Navarro, I., et al. 2017, MNRAS, 467, 1929 Google Scholar
Harris, W. E., Ciccone, S. M., Eadie, G. M., et al. 2017, ApJ, 835, 101 10.3847/1538-4357/835/1/101CrossRefGoogle Scholar
Kauffmann, G, Heckman, T. M., White, S. D. M., et al. 2003, MNRAS, 341, 54 CrossRefGoogle Scholar
Kelvin, L., et al. 2014, MNRAS, 444, 1647 10.1093/mnras/stu1507CrossRefGoogle Scholar
Kruijssen, J. M. D., Pfeffer, J. L., Reina-Campos, M., et al. 2019, MNRAS, 486, 3180 CrossRefGoogle Scholar
La Barbera, F., Ferreras, I., Vazdekis, A., et al. 2013, MNRAS, 433, 3017 CrossRefGoogle Scholar
Leaman, R., VandenBerg, D. A., Mendel, J. T., et al. 2013, MNRAS, 436, 122 CrossRefGoogle Scholar
Mackey, D., Lewis, G. F., Brewer, B. J., et al. 2019, Nature, 574, 69 CrossRefGoogle Scholar
Martín-Navarro, I., La Barbera, F., Vazdekis, A., et al. 2015, MNRAS, 451, 1081 10.1093/mnras/stv1022CrossRefGoogle Scholar
Martín-Navarro, I., van de Ven, G., & Yldrm, A. 2019, MNRAS, 487, 4939 CrossRefGoogle Scholar
Moster, B. P., Naab, T., & White, S. D. M. 2013, MNRAS, 428, 3121 CrossRefGoogle Scholar
Newman, A. B., Belli, S., Ellis, R. S., et al. 2018, ApJ, 862, 126 CrossRefGoogle Scholar
Oser, L., Ostriker, J. P., Naab, T., et al. 2010, ApJ, 725, 2312 CrossRefGoogle Scholar
Peng, E. W., Jordán, A., Côté, P., et al. 2006, ApJ, 639, 95 CrossRefGoogle Scholar
Quilis, V. & Trujillo, I. 2013, ApJL, 773, L8 CrossRefGoogle Scholar
Salvador-Rusiñol, N., Vazdekis, A., La Barbera, F., et al. 2019, Nature Astronomy, 4, 252 CrossRefGoogle Scholar
Shankar, F., Marulli, F., Bernardi, M., et al. 2013, MNRAS, 428, 109 10.1093/mnras/sts001CrossRefGoogle Scholar
Spavone, M, Capaccioli, M, Napolitano, et al. A&A, 603, 38 Google Scholar
Tonini, C. 2013, ApJ, 762, 39 CrossRefGoogle Scholar
Toft, S., Zabl, J., Richard, J., et al. 2017, Nature, 546, 510 CrossRefGoogle Scholar
Thomas, D., Maraston, C., Bender, R., et al. 2005, ApJ, 621, 673 CrossRefGoogle Scholar
Trager, S. C., Faber, S. M., Worthey, G., et al. 2000, AJ, 119, 1645 CrossRefGoogle Scholar
Trujillo, I., Conselice, C. J., Bundy, K., et al. 2007, MNRAS, 382, 109 CrossRefGoogle Scholar
Trujillo, I., Ferré-Mateu, A., Balcells, M., et al. 2014, ApJL, 780, L20 CrossRefGoogle Scholar
van den Bosch, R. C. E., Gebhardt, K., Gültekin, K., et al. 2015, ApJS, 28, 10 10.1088/0067-0049/218/1/10CrossRefGoogle Scholar
van den Bosch, R. C. E., Gebhardt, K., Gültekin, K., et al. 2012, Nature, 491, 729 CrossRefGoogle Scholar
van Dokkum, P. G., Franx, M., Kriek, M., et al. 2008, ApJL, 677, L5 10.1086/587874CrossRefGoogle Scholar
Yldrm, A., van den Bosch, R. C. E., van de Ven, G., et al. 2017, MNRAS, 468, 4216 CrossRefGoogle Scholar