Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T09:27:31.725Z Has data issue: false hasContentIssue false

Recurrent Novae: What Do We Know about Them?

Published online by Cambridge University Press:  17 January 2013

G. C. Anupama*
Affiliation:
Indian Institute of Astrophysics, II Block Koramangala, Bangalore 560034, India email: gca@iiap.res.in
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recurrent novae (RNe) belong to the group of cataclysmic variables that exhibit nova outbursts at intervals on the order of decades. They are rare, with 10 Galactic RNe known to date. Two are known in the LMC, while there are a few suspected RNe in M31. Nova outburst models require a high accretion rate on a massive white dwarf to explain the recurring nova outbursts, making this class of objects one of the most likely progenitor binary systems of Type Ia supernovae. The observational properties of the known Galactic recurrent novae are presented here, together with some discussion on the recent outbursts of RS Ophiuchi (2006), U Scorpii (2010), and T Pyxidis (2011).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Anupama, G. C. 2008, in: Evans, A., Bode, M. F., O'Brien, T. J. & Darnley, M. J. (eds.), RS Ophiuchi (2006) and the Recurrent Nova Phenomenon ASP Conf. Ser 401, (San Francisco: ASP), p. 31Google Scholar
Anupama, G. C. & Dewangan, G. C. 2000, AJ, 119, 1359Google Scholar
Anupama, G. C. & Mikołajewska, J. 1999, A&A, 344, 177Google Scholar
Anupama, G. C.et al. 2011, MNRAS, (submitted)Google Scholar
Barlow, M. J.et al. 1981, MNRAS, 195, 61Google Scholar
Bode, M. F.et al. 2006, ApJ, 652, 629Google Scholar
Bode, M. F.et al. 2007, ApJ (Letters) 665, L63CrossRefGoogle Scholar
Catchpole, R. M. 1969, MNRAS, 142, 119CrossRefGoogle Scholar
Das, R. K., Banerjee, D. P. K., & Ashok, N. M. 2006, ApJ (Letters) 604, L129Google Scholar
Diaz, M. P., Williams, R. E., Luna, G. J., Moraes, M., & Takeda, L. 2010, AJ, 140, 1860Google Scholar
Dobrzycka, D., Kenyon, S. J., Proga, D., Mikołajewska, J., & Wade, R. A. 1996, AJ, 111, 2090Google Scholar
Duerbeck, H. W., Duemmlerm, R., Seitter, W. C., Leibowitz, E. M., & Shara, M. M. 1993, Ann. Israeli Phys. Soc., 10, 284Google Scholar
Evans, A., et al. 2007a, MNRAS, 374, L1CrossRefGoogle Scholar
Evans, A., et al. 2007b, ApJ (Letters) 671, L157Google Scholar
Eyres, S. P. S., et al. 2009, MNRAS, 395, 1533CrossRefGoogle Scholar
Greiner, J. & Di Stefano, R. 2002, ApJ, 578, L59Google Scholar
Hachisu, I & Kato, M. 2001, ApJ, 558, 323CrossRefGoogle Scholar
Hachisu, I., Kato, M., & Luna, G. J. M. 2007, ApJ (Letters) 659, L153Google Scholar
Hachisu, I., Kato, M., & Schaefer, B. M. 2003, ApJ, 584, 1008CrossRefGoogle Scholar
Hanes, D. A. 1985, MNRAS, 213, 443CrossRefGoogle Scholar
Iijima, T. 1990, J. Am. Assoc. Variable Star Obs. 19, 28Google Scholar
Iijima, T. 2002, A&A, 387, 1013Google Scholar
Kafka, S., Williams, R. 2011, A&A, 526, 83Google Scholar
Kahabka, P., Hartmann, H. W., Parmar, A. N., & Neueruela, I. 1999, A&A, 347, L43Google Scholar
Kantharia, N. G., Anupama, G. C., Prabhu, T. P., Ramya, S., Bode, M. F., Eyres, S. P. S., & O'Brien, T. J. 2007, ApJ (Letters), 667, L171CrossRefGoogle Scholar
Kato, M. 2002, in Gänsicke, B.T., Beuermann, K. & Reinsch, K. (eds.), The Physics of Cataclysmic Variables and Related Objects, ASP Conference Series 261, (San Francisco: ASP), p 595Google Scholar
Kuuljers, E., et al., 2011, ATel, 3285, 1Google Scholar
Luna, G. J. M., Montez, R., Sokoloski, J. L., Mukai, K., & Kastner, J. H. 2009, ApJ, 707, 1168CrossRefGoogle Scholar
Lynch, D. K., et al. 2004, AJ, 127, 1089CrossRefGoogle Scholar
Maxwell, M. P., et al. 2011, MNRAS, (accepted)Google Scholar
Mennickent, R. E. & Honeycutt, R. K. 1995, IBVS, No. 4232Google Scholar
O'Brien, T. J., et al. 2006, Nature, 442, 279CrossRefGoogle Scholar
Orio, M., Tepedelenlioglu, E., Starrfield, S., Woodward, C. E. & Della Valle, M. 2005, ApJ, 620, 938CrossRefGoogle Scholar
Osborne, J. P., et al. 2011, ApJ, 727, 124CrossRefGoogle Scholar
Ribeiro, V. A. R. M., et al. 2009, ApJ, 703, 1955CrossRefGoogle Scholar
Schaefer, B. E. 2010, ApJS, 187, 275CrossRefGoogle Scholar
Schaefer, B. E. 2010b, astro-ph.SR, arXiv:1009.3197Google Scholar
Sekiguchi, K., Feast, M. W., Whitelock, P. A., Overbeek, M. D., Wargau, W., Spencer Jones, J. 1988, MNRAS, 234, 281CrossRefGoogle Scholar
Selvelli, P. L., Cassatella, A., & Gilmozzi, R. 1992, ApJ, 393, 289CrossRefGoogle Scholar
Shara, M., et al. 1997, AJ, 114, 258CrossRefGoogle Scholar
Shore, S. N., Augusteijn, T., Ederoclite, A., & Uthas, H. 2011, A&A, 533, L8Google Scholar
Sokoloski, J. L., Luna, G. J. M., Mukai, K., & Kenyon, S. J. 2006, Nature, 442, 276CrossRefGoogle Scholar
Sokoloski, J. L., Rupen, M. P., & Mioduszewski, A. J. 2008, ApJ (Letters) 685, L137CrossRefGoogle Scholar
Stanishev, V., Zamanov, R., Tomov, N., & Marziani, P. 2004, A&A, 415, 609Google Scholar
Starrfield, S., Sparks, W. M., & Truran, J. W. 1985, ApJ, 291, 136Google Scholar
Thoroughgood, T. D., Dhillon, V. S., Littlefair, S. P., Marsh, T. R., & Smith, D. A. 2001, MNRAS, 327, 1323Google Scholar
Uthas, H., Knigge, C., & Steeghs, D. 2010, MNRAS, 409, 237CrossRefGoogle Scholar
Waagan, E. 2011, CBET, 2700, 1Google Scholar
Williams, R. E., Sparks, W. M., Gallagher, J. S., Ney, E. P., Starrfield, S. G., & Truran, J. W. 1981, ApJ, 251, 221Google Scholar
Worters, H. L., Eyres, S. P. S., Rushton, M. T., Schaefer, B. 2010, IAUC 9114, 1Google Scholar
Yamanaka, M., et al. 2010, PASJ, 62, L37Google Scholar
Yaron, O., Prialnik, D., Shara, M. M., & Kovetz, A. 2005, ApJ, 623, 398Google Scholar
Zamanov, R., Gomboc, A., Bode, M. F., Porter, J. M., & Tomov, N. A. 2005, PASP, 117, 268Google Scholar