Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-11T06:15:34.752Z Has data issue: false hasContentIssue false

Red Supergiants in M31: The Humphreys-Davidson limit at high metallicity

Published online by Cambridge University Press:  29 August 2024

Sarah L. E. McDonald*
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park ic2,146 Brownlow Hill, Liverpool, L3 5RF, UK
Ben Davies
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park ic2,146 Brownlow Hill, Liverpool, L3 5RF, UK
Emma R. Beasor
Affiliation:
NSF’s National Optical-Infrared Astronomy Research Laboratory, 950 N. Cherry Ave., Tucson, AZ 85719, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The empirical upper limit to Red Supergiant (RSG) luminosity, known as the Humphreys-Davidson (HD) limit, has been commonly explained as being caused by the stripping of stellar envelopes by metallicity-dependent, line-driven winds. As such, the theoretical expectation is that the HD limit should be higher at lower metallicity, where weaker mass-loss rates mean that higher initial masses are required for an envelope to be stripped. In this work, we test this prediction by measuring the luminosity function of RSGs in M31 and comparing to those in the LMC and SMC. We find that $\[\log ({L_{{\rm{m}}ax}}/{L_ \odot }) = 5.53 \pm 0.03\]$ in M31 (Z ≳ Z), consistent with the limit found for both the LMC (Z ∼ 0.5 Z) and SMC (Z ∼ 0.25 Z), while the RSG luminosity distributions in these 3 galaxies are consistent to within 1σ. We therefore find no evidence for a metallicity dependence on both the HD limit and the RSG luminosity function, and conclude that line-driven winds on the main sequence are not the cause of the HD limit.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245 CrossRefGoogle Scholar
Cutri, R. M., et al. 2003, VizieR Online Data Catalog, II/246Google Scholar
Dalcanton, J. J., et al. 2012, ApJS, 200, 18 Google Scholar
Dalcanton, J. J. 2015, ApJ, 814, 3 Google Scholar
Davies, Crowther & Beasor. 2018, MNRAS, 478, 3138Google Scholar
Ekström, S., et al. 2012, A&A, 537, A146 Google Scholar
Collaboration, Gaia. 2020, VizieR Online Data Catalog, I/350Google Scholar
Georgy, C., et al. 2013, A&A, 558, A103 Google Scholar
Humphreys, R. M. 1983, ApJ, 265, 176 CrossRefGoogle Scholar
Humphreys, R. M., & Davidson, K. 1979, ApJ, 232, 409 Google Scholar
Khan, R. 2017, ApJS, 228, 5 Google Scholar
Kudritzki, R. P., Pauldrach, A., & Puls, J. 1987, A&A, 173, 293 Google Scholar
Maeder, A. 1981, A&A, 102, 401 Google Scholar
Maeder, A., & Meynet, G. 2003, in IAU Symposium, Vol. 212, A Massive Star Odyssey: From Main Sequence to Supernova, ed. van der Hucht, K., Herrero, A., & Esteban, C., 267Google Scholar
Massey, P., & Evans, K. A. 2016, ApJ, 826, 224 CrossRefGoogle Scholar
Massey, P., Olsen, K. A., Hodge, P. W., Jacoby, G. H., McNeill, R. T., Smith, R. C., & Strong, S. B. 2006, in American Astronomical Society Meeting Abstracts, Vol. 209, American Astronomical Society Meeting Abstracts, 27.01Google Scholar
McDonald, S. L. E., Davies, B., & Beasor, E. R. 2022, MNRAS, 510, 3132 Google Scholar
Rieke, G. H., & Lebofsky, M. J. 1985, ApJ, 288, 618 Google Scholar
Rodrigo, C., & Solano, E. 2020, in Contributions to the XIV.0 Scientific Meeting (virtual) of the Spanish Astronomical Society, 182 Google Scholar
Sandage, A., & Tammann, G. A. 1974, ApJ, 191, 603 Google Scholar
Stothers, R. 1969, ApJ, 155, 935 Google Scholar
Stothers, R., & Chin, C. W. 1978, ApJ, 226, 231 Google Scholar
Stothers, R., & Chin, C. W.. 1979, ApJ, 233, 267 Google Scholar