Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T19:08:27.261Z Has data issue: false hasContentIssue false

Relativistic aspects of rotational motion of celestial bodies

Published online by Cambridge University Press:  06 January 2010

S. A. Klioner
Affiliation:
Lohrmann Observatory, Dresden Technical University, 01062 Dresden, Germany
E. Gerlach
Affiliation:
Lohrmann Observatory, Dresden Technical University, 01062 Dresden, Germany
M. H. Soffel
Affiliation:
Lohrmann Observatory, Dresden Technical University, 01062 Dresden, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Relativistic modelling of rotational motion of extended bodies represents one of the most complicated problems of Applied Relativity. The relativistic reference systems of IAU (2000) give a suitable theoretical framework for such a modelling. Recent developments in the post-Newtonian theory of Earth rotation in the limit of rigidly rotating multipoles are reported below. All components of the theory are summarized and the results are demonstrated. The experience with the relativistic Earth rotation theory can be directly applied to model the rotational motion of other celestial bodies. The high-precision theories of rotation of the Moon, Mars and Mercury can be expected to be of interest in the near future.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bailey, D. H., 2005, Computing in Science and Engineering, 7(3), 54; see also http://crd.lbl.gov/~dhbailey/mpdist/CrossRefGoogle Scholar
Bizouard, C., Schastok, J., Soffel, M. H., & Souchay, J., (1992) In: Journées 1992, Capitaine, N. (ed.), Observatoire de Paris, 76Google Scholar
Bois, E. & Vokrouhlicky, D., 1995, A&A, 300, 559Google Scholar
Bretagnon, P., Francou, G., Rocher, P., & Simon, J. L., 1997, A&A, 319, 305Google Scholar
Bretagnon, P., Francou, G., Rocher, P., & Simon, J. L., 1998, A&A, 329, 329Google Scholar
Brumberg, V.A., 1972, Relativistic Celestial Mechanics, Nauka: Moscow, in RussianGoogle Scholar
Brumberg, V. A., Simon, J.-L., 2007, Notes scientifique et techniques de l'insitut de méchanique céleste, S088Google Scholar
Damour, T., Soffel, M., & Xu, Ch., 1993, Phys. Rev. D 47, 3124CrossRefGoogle Scholar
Klioner, S. A., 1996, In: “Dynamics, Ephemerides, and Astrometry of the Solar System”, Ferraz-Mello, S. and Morando, B., Arlot, J.-E. (eds.), Springer, New York, 309Google Scholar
Klioner, S. A., 2008a, A&A, 478, 951Google Scholar
Klioner, S. A., 2008b, In: A Giant Step: from Milli- to Micro-arcsecond Astrometry, Jin, W., Platais, I., Perryman, M. (eds.), Cambridge University Press, Cambridge, 356Google Scholar
Klioner, S. A. & Soffel, M., 2000, Phys. Rev. D 62, 024019Google Scholar
Klioner, S. A., Soffel, M., Xu, C., & Wu, X., 2001, In: Influence of geophysics, time and space reference frames on Earth rotation studies, Capitaine, N. (ed.), Paris Observatory, Paris, 232Google Scholar
Klioner, S. A., Gerlach, E., & Soffel, M., 2009a, “Rigorous treatment of geodesic precession in the theory of Earth rotation”, in preparationGoogle Scholar
Klioner, S. A., Gerlach, E., & Soffel, M., 2009b, “Post-Newtonian theory of Earth rotation”, in preparationGoogle Scholar
Simon, J.-L., 2007, private communicationGoogle Scholar
Soffel, M., Klioner, S. A., Petit, G. et al. , 2003, Astron.J., 126, 2687Google Scholar