Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T17:37:21.922Z Has data issue: false hasContentIssue false

Resolved Schmidt-Kennicutt Relation for Star Forming Regions in the Galaxy and Magellanic Clouds

Published online by Cambridge University Press:  21 March 2013

C.-H. R. Chen
Affiliation:
Max-Planck-Institut für Radioastronomie, D-53121 Bonn, Germany, email: rchen@mpifr.de
R. Indebetouw
Affiliation:
University of Virginia/NRAO, Charlottesville, VA22904, USA
E. Muller
Affiliation:
National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
M. Messineo
Affiliation:
Max-Planck-Institut für Radioastronomie, D-53121 Bonn, Germany, email: rchen@mpifr.de
K. M. Menten
Affiliation:
Max-Planck-Institut für Radioastronomie, D-53121 Bonn, Germany, email: rchen@mpifr.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The relationship between star formation rate (SFR) and the gas surface density (Σgas) is one of the most critical links between star formation and galaxy evolution. The observed SFR- Σgas relation, the “Schmidt-Kennicutt (S-K) law”, is tight when properties are averaged over kpc, but breaks down at the scale of giant molecular clouds (GMCs). To understand the physics governing the variations at GMC scales and the tight correlation at kpc scales, spatially and temporally resolved data covering a wide range of linear scale are needed. We have used the Spitzer surveys of the Large Magellanic Cloud and Magellanic Bridge to identify massive young stellar objects (YSOs), estimate “instantaneous” SFRs, and compare them to the S-K relation. These instantaneous SFRs are further compared to that estimated from integrated Hα and 24 μm luminosities to examine how SFRs vary on 10 Myr timescales. We have also used SINFONI near-IR integral field spectra of two Galactic mini-starbursts W31 and W43 to determine their underlying massive stellar content, estimate the SFRs, and compare to the S-K relation. To investigate evironmental effects on star formation, we have used complete YSO samples in the LMC and the Bridge to estimate global star formation efficiencies (SFE) in these two systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Bigiel, F., Leroy, A., Walter, F., et al. 2010, AJ, 140, 1194CrossRefGoogle Scholar
Blitz, L., Fukui, Y., Kawamura, A., et al. 2007, Protostars and Planets V, 81Google Scholar
Calzetti, D., Kennicutt, R. C., Engelbracht, C. W., et al. 2007, ApJ, 666, 870CrossRefGoogle Scholar
Chen, C.-H. R., Chu, Y.-H., Gruendl, R. A., Gordon, K. D., & Heitsch, F. 2009, ApJ, 695, 511CrossRefGoogle Scholar
Chen, C.-H. R., Indebetouw, R., Chu, Y.-H., et al. 2010, ApJ, 721, 1206CrossRefGoogle Scholar
Chen, C.-H. R., Indebetouw, R., Muller, E., et al. 2012, ApJ, submittedGoogle Scholar
Gruendl, R. A. & Chu, Y. 2009, ApJS, 184, 172Google Scholar
Heitsch, F., Slyz, A. D., Devriendt, J. E. G., Hartmann, L. W., & Burkert, A. 2006, ApJ, 1052CrossRefGoogle Scholar
Indebetouw, R., Whitney, B. A., Kawamura, A., et al. 2008, AJ, 136, 1442CrossRefGoogle Scholar
Kawamura, A., Mizuno, Y., Minamidani, T., et al. 2009, ApJS, 184, 1CrossRefGoogle Scholar
Kennicutt, R. C. Jr., 1984, ApJ, 287, 116Google Scholar
Kennicutt, R. C. Jr., 1989, ApJ, 344, 685Google Scholar
Kim, S., Staveley-Smith, L., Dopita, M. A., Sault, R. J., Freeman, K. C., Lee, Y., & Chu, Y. 2003, ApJS, 148, 473Google Scholar
Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2009, ApJ, 693, 216CrossRefGoogle Scholar
Mizuno, N., Muller, E., Maeda, H., et al. 2006, ApJL, 643, L107Google Scholar
Muller, E., Staveley-Smith, L., Zealey, W., & Stanimirović, S. 2003, MNRAS, 339, 105CrossRefGoogle Scholar
Onodera, S., Kuno, N., Tosaki, T., et al. 2010, ApJL, 722, L127CrossRefGoogle Scholar
Schruba, A., Leroy, A. K., Walter, F., et al. 2010, ApJ, 722, 1699Google Scholar