Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T13:36:05.418Z Has data issue: false hasContentIssue false

Review: progress in NLTE calculations and their application to large data-sets

Published online by Cambridge University Press:  06 January 2014

Lyudmila Mashonkina*
Affiliation:
Institute of Astronomy, Russian Academy of Sciences, Pyatnitskaya st. 48, RU-119017 Moscow, Russia email: lima@inasan.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of the major tasks in interpretation of data from large-scale stellar surveys is to determine the fundamental atmospheric parameters such as effective temperature, surface gravity, and metallicity. In most on-going and upcoming projects, they are derived spectroscopically, relying on classical one-dimensional (1D) model atmospheres and the assumption of LTE. This review discusses the present achievements and problems of non-local thermodynamic equilibrium (NLTE) line-formation calculations for FGK-type stars. The topics that are addressed include (i) the construction of comprehensive model atoms for the chemical elements with complex term system, (ii) possible systematic errors inherent in classical LTE spectroscopic determinations of stellar parameters and chemical abundances, (iii) the uncertainties in final NLTE results caused by the uncertainties in atomic data, and (iv) applications of the NLTE line-formation calculations coupled to the spatial and temporal average 〈3D〉 models to spectroscopic analyses.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Ali, A. W. & Griem, H. R. 1966, Phys.Rev., 144, 366Google Scholar
Allard, N. F., Kielkopf, J. F., Cayrel, R. & van't Veer-Menneret, C. 2008, A&A, 480, 581Google Scholar
Andrievsky, S. M., Spite, M., Korotin, S. A., et al. 2007, A&A, 464, 1081Google Scholar
Andrievsky, S. M., Spite, M., Korotin, S. A., et al. 2008, A&A, 481, 481Google Scholar
Asplund, M. 2005, ARAA, 43, 481Google Scholar
Barklem, P. S., Belyaev, A. K., Spielfiedel, A., et al. 2012, A&A, 541, A80Google Scholar
Barklem, P. S., Piskunov, N., & O'Mara, B. J. 2000, A&A, 355, L5Google Scholar
Beeck, B., Collet, R., Steffen, M., et al. 2012, A&A, 539, A121Google Scholar
Belyaev, A. K. & Barklem, P. S. 2003, Phys. Rev. A68, 062703Google Scholar
Belyaev, A. K., Barklem, P. S., Dickinson, A. S., & Gadéa, F. X. 2010, Phys. Rev., A81, 032706Google Scholar
Bergemann, M. 2011, MNRAS, 413, 2184CrossRefGoogle Scholar
Bergemann, M. & Cescutti, G. 2010, A&A, 522, A9Google Scholar
Bergemann, M. & Gehren, T. 2007, A&A, 473, 291Google Scholar
Bergemann, M., Lind, K., Collet, R., et al. 2012, MNRAS, 427, 27Google Scholar
Bergemann, M., Pickering, Juliet C., & Gehren, T. 2010, MNRAS, 401, 1334Google Scholar
Bonifacio, P., Spite, M., Cayrel, R., et al. 2009, A&A, 501, 519Google Scholar
Cayrel, R., Depagne, E., Spite, M., et al. 2004, A&A, 416, 1117Google Scholar
Cayrel, R., van't Veer-Menneret, C., Allard, N. F., & Stehlé, C. 2011, A&A, 531, A83Google Scholar
Collet, R., Asplund, M., & Trampedach, R. 2007, A&A, 469, 687Google Scholar
Drawin, H. W. 1968, Z. Physik, 211, 404Google Scholar
Drawin, H. W. 1969, Z. Physik, 225, 483Google Scholar
Freytag, B., Steffen, M., Ludwig, H.-G., et al. 2012, Journal of Computational Physics, 231, 919Google Scholar
Fuhrmann, K., Axer, M., & Gehren, T. 1993, A&A, 271, 451Google Scholar
Fuhrmann, K., Pfeiffer, M., Frank, C., et al. 1997, A&A, 323, 909Google Scholar
Grupp, F., Kurucz, R. L., & Tan, K. 2009, A&A, 503, 177Google Scholar
Gustafsson, B., Edvardsson, B., Eriksson, E., et al. 2008, A&A, 486, 951Google Scholar
Hayek, W., Asplund, M., Collet, R. & Nordlund, Å. 2011, A&A, 529, A158Google Scholar
Klevas, J., Mashonkina, L., Kucinskas, A.et al. 2013, in preparationGoogle Scholar
Lind, K., Bergemann, M., & Asplund, M. 2012, MNRAS, 427, 50Google Scholar
Mashonkina, L. 2013, A&A, 550, A28Google Scholar
Mashonkina, L., Gehren, T., Shi, J.-R., et al. 2011, A&A, 528, A87Google Scholar
Mashonkina, L., Korn, A. J., & Przybilla, N. 2007, A&A, 461, 261Google Scholar
Mashonkina, L., Ludwig, H.-G., Korn, A. J., et al. 2013, Mem. Soc. Astron. Ital, in pressGoogle Scholar
Mashonkina, L., Ryabchikova, T., Ryabtsev, A., & Kildiyarova, R. 2009, A&A, 495, 297Google Scholar
Mashonkina, L., Ryabtsev, A., & Frebel, A. 2012, A&A, 540, A98Google Scholar
Mashonkina, L., Zhao, G., Gehren, T., et al. 2008, A&A, 478, 529Google Scholar
Merle, T., Thévenin, F., Pichon, B., & Bigot, L. 2011, MNRAS, 418, 863Google Scholar
Norris, J. E., Christlieb, N., Korn, A. J., et al. 2007, ApJ, 670, 774Google Scholar
Pereira, T. M. D., Asplund, M., & Kiselman, D. 2009, A&A, 508, 1403Google Scholar
Pereira, T. M. D., Asplund, M., Collet, R., et al. 2013, arxiv 1304.7679Google Scholar
Ren, J., Christlieb, N., Mashonkina, L., et al. 2013, in preparationGoogle Scholar
Ruchti, G. R., Bergemann, M., Serenelli, A., et al. 2013, MNRAS, 429, 126Google Scholar
Spite, M., Andrievsky, S. M., Spite, F., et al. 2012, A&A, 541, A143Google Scholar
Starkenburg, E., Hill, V., Tolstoy, E., et al. 2010, A&A, 513, A34Google Scholar
Steenbock, W. & Holweger, H. 1984, A&A, 130, 319Google Scholar
Takeda, Y., Hashimoto, O., Taguchi, H., et al. 2005, PASJ, 57, 751Google Scholar
Velichko, A. B., Mashonkina, L. I., & Nilsson, H. 2010, Astron. Lett., 36, 664Google Scholar
Vieytes, M. C. & Fontenla, J. M. 2013, ApJ, 769, 103Google Scholar
Zhang, H. W., Gehren, T. & Zhao, G. 2008, A&A, 481, 489Google Scholar