Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T12:50:52.786Z Has data issue: false hasContentIssue false

The Role of Empirical Space-Weather Models (in a World of Physics-Based Numerical Simulations)

Published online by Cambridge University Press:  24 July 2018

Mathew J. Owens
Affiliation:
Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, Reading RG6 6BB, UK email: m.j.owens@reading.ac.uk
Pete Riley
Affiliation:
Predictive Science Inc., 9990 Mesa Rim Rd, Suite 170, San Diego, CA 92121, USA email: pete@predsci.com
Tim Horbury
Affiliation:
Blackett Laboratory, Imperial College London, London SW7 2BZ, UK email: t.horbury@imperial.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Advanced forecasting of space weather requires prediction of near-Earth solar-wind conditions on the basis of remote solar observations. This is typically achieved using numerical magnetohydrodynamic models initiated by photospheric magnetic field observations. The accuracy of such forecasts is being continually improved through better numerics, better determination of the boundary conditions and better representation of the underlying physical processes. Thus it is not unreasonable to conclude that simple, empirical solar-wind forecasts have been rendered obsolete. However, empirical models arguably have more to contribute now than ever before. In addition to providing quick, cheap, independent forecasts, simple empirical models aid in numerical model validation and verification, and add value to numerical model forecasts through parameterization, uncertainty estimation and ‘downscaling’ of sub-grid processes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Barnard, L., et al. 2011, Geophys. Res. Lett., 381, doi:10.1029/2011GL048489Google Scholar
Bartels, J. 1934, Terr. Magn. Atmos. Electr, 39, 201, doi:10.1029/TE039i003p00201Google Scholar
Cranmer, S., Gibson, S. & Riley, P. 2017, Space Sci. Rev., pressGoogle Scholar
Lionello, R., et al. 2013, Astrophys. J., 777, 1, 76Google Scholar
Merkin, V., et al. 2007, Space Weather, 5, S12001, doi:10.1029/2007SW000335Google Scholar
Mikic, Z., Linker, J. A., Schnack, D. D., Lionello, R. & Tarditi, A. 1999, Phys. Plasma, 6, 2217Google Scholar
Odstrcil, D. 2003, Adv. Space Res., 32, 497506Google Scholar
Odstrcil, D., Riley, P. & Zhao, X. P. 2004, J. Geophys. Res., 109, doi:10.1029/2003JA010135Google Scholar
Owens, M., et al. 2005, J. Geophys. Res., 110, doi:10.1029/2005JA011343Google Scholar
Owens, M., et al. 2008, Space Weather, 6, doi:10.1029/2007SW000380CrossRefGoogle Scholar
Owens, M., Challen, R., Methven, J., Henley, E. & Jackson, D. 2013, Space Weather, 11, 225-236, doi:10.1002/swe.20040CrossRefGoogle Scholar
Owens, M., et al. 2014, Space Weather, 12, 395-405, doi:10.1002/2014SW001064Google Scholar
Owens, M., Riley, P. & Horbury, T. 2017, Sol. Phys., 292, 5, 69, doi: 10.1007/s11207-017-1090-7Google Scholar
Owens, M. & Riley, 2017, Space Weather, submittedGoogle Scholar
Riley, P., Linker, J. & Mikic, Z. 2001 J. Geophys. Res., 106, A8, 15889-15901Google Scholar
Riley, P. & Lionello, R. 2011, Sol. Phys., 270, 575-592, doi:10.1007/s11207-011-9766-xGoogle Scholar
Riley, P., Linker, J. A. & Arge, C. N. 2015, Space Weather, 13, 154-169, doi:10.1002/2014SW001144Google Scholar
Riley, P., et al. 2017, Space Weather, 15, 3, 526-540, doi:10.1002/2016SW001589Google Scholar
Siscoe, G., et al. 2004, J. Atmos. Sol. Terr., 66, 14691480Google Scholar
Toth, G., et al. 2005, J. Geophys. Res., 110, A12226, doi:10.1029/2005JA011126Google Scholar
Wang, Y. M. & Sheeley, N. R. Jr. 1990, Astrophys. J., 335, 726Google Scholar