Article contents
Role of longitudinal activity complexes for solar and stellar dynamos
Published online by Cambridge University Press: 18 July 2013
Abstract
In this paper we first discuss observational evidence of longitudinal concentrations of magnetic activity in the Sun and rapidly rotating late-type stars with outer convective envelopes. Scenarios arising from the idea of rotationally influenced anisotropic convective turbulence being the key physical process generating these structures are then presented and discussed - such effects include the turbulent dynamo mechanism, negative effective magnetic pressure instability (NEMPI) and hydrodynamical vortex instability. Finally, we discuss non-axisymmetric stellar mean-field dynamo models, the results obtained with them, and compare those with the observational information gathered up so far. We also present results from a pure α2 mean-field dynamo model, which show that time-dependent behavior of the dynamo solutions can occur both in the form of an azimuthal dynamo wave and/or oscillatory behavior related to the alternating energy levels of the active longitudes.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 8 , Symposium S294: Solar and Astrophysical Dynamos and Magnetic Activity , August 2012 , pp. 175 - 186
- Copyright
- Copyright © International Astronomical Union 2013
References
- 2
- Cited by