Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T11:08:48.021Z Has data issue: false hasContentIssue false

The Role of Magnetic Fields in Star Formation

Published online by Cambridge University Press:  07 August 2014

Ralph E. Pudritz
Affiliation:
Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada email: pudritz@mcmaster.ca
Mikhail Klassen
Affiliation:
Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
Helen Kirk
Affiliation:
Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada Banting Fellow, McMaster University; now at Radio Astronomy Program, NRC, Canada
Daniel Seifried
Affiliation:
Hamburg Sternwarte, University of Hamburg, Gojenbergsweg 112 21209 Hamburg - Germany
Robi Banerjee
Affiliation:
Hamburg Sternwarte, University of Hamburg, Gojenbergsweg 112 21209 Hamburg - Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stars are born in turbulent, magnetized filamentary molecular clouds, typically as members of star clusters. Several remarkable technical advances enable observations of magnetic structure and field strengths across many physical scales, from galactic scales on which giant molecular clouds (GMCs) are assembled, down to the surfaces of magnetized accreting young stars. These are shedding new light on the role of magnetic fields in star formation. Magnetic fields affect the gravitational fragmentation and formation of filamentary molecular clouds, the formation and fragmentation of magnetized disks, and finally to the shedding of excess angular momentum in jets and outflows from both the disks and young stars. Magnetic fields play a particularly important role in angular momentum transport on all of these scales. Numerical simulations have provided an important tool for tracking the complex process of the collapse and evolution of protostellar gas since several competing physical processes are at play - turbulence, gravity, MHD, and radiation fields. This paper focuses on the role of magnetic fields in three crucial regimes of star formation: the formation of star clusters emphasizing fragmentation, disk formation and the origin of early jets and outflows, to processes that control the spin evolution of young stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Alves, J., Lombardi, M., & Lada, C. J. 2007, A&A, 462, L17Google Scholar
Anderson, J. M., Li, Z. Y., Krasnopolsky, R., & Blandford, R. D.ApJ, 630, 945CrossRefGoogle Scholar
André, Ph., Men'shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102Google Scholar
André, Ph., Men'shchikov, A., Könyves, V., & Arzoumanian, D. 2011, in Computational Star Formation, IAU Symp. 270, Eds. J. Alves et al., p. 255Google Scholar
André, Ph., Di Francesco, J., Ward-Thompson, D., Inutsuka, S-I., Pudritz, R. E., & Pineda, J. 2014, in: Protostars and Planets VI, (Eds. Beuther, H., Klessen, R., Dullemond, K., & Henning, T.), in press.Google Scholar
Bacciotti, F., Ray, T. P., Mundt, R., et al. 2002, ApJ, 576, 222Google Scholar
Banerjee, R. & Pudritz, R. E. 2006, ApJ 641 949 1CrossRefGoogle Scholar
Banerjee, R., Pudritz, R. E., & Anderson, D. W., 2006, MNRAS, 373, 1091Google Scholar
Basu, S. & Mouschovias, T. 1994, ApJ, 432, 720CrossRefGoogle Scholar
Beck, R. 2005, in: Cosmic magnetic fields; Lecture Notes in Physics, 664, Eds. Wielebinski, R. & Beck, R., p. 41.Google Scholar
Beck, R. 2012, Space Sci Rev, 166, 215.Google Scholar
Beck, et al. 1999Google Scholar
Blandford, R. D. & Payne, D. G. 1982, MNRAS, 199, 883Google Scholar
Bouvier, S. P. Matt, Mohanty, S., Scholz, A., Stassun, K. G., & Zanni, C. 2014, in: Protostars and Planets VI, (Eds: Beuther, H., Klessen, R., Dullemond, K., & Henning, T.), in press.Google Scholar
Chabrier, G. 2005, PASP, 115, 763CrossRefGoogle Scholar
Collins, D., Padoan, P., Norman, M. L., & Xu, H. 2011, ApJ, 731, 59Google Scholar
Cranmer, S. R. 2006, ApJ, 689, 316Google Scholar
Cranmer, S. R. 2009, ApJ, 706, 824CrossRefGoogle Scholar
Crutcher, R. M. 2012, ARA&A, 50, 29Google Scholar
Crutcher, R. M., Wandelt, B., Heiles, C., Falgarone, E., & Troland, T. H. 2010, ApJ, 725, 466Google Scholar
Decampli, W. M. 1981, ApJ, 244, 124Google Scholar
Duffin, D. F. & Pudritz, R. E. 2009, ApJL, 706, L46CrossRefGoogle Scholar
Elmegreen, B. G. 1982, ApJ, 253, 655Google Scholar
Fiege, J. D. & Pudritz, R. E. 2000, MNRAS, 311, 85Google Scholar
Fletcher, A. 2011, in The dynamic interstellar medium: a celebration of the Canadian Galactic Plane Survey, ASP Conference Series, 438, Eds. Kothes, R., Landecker, T. L. & Willis, A. G., 438, 197.Google Scholar
Fletcher, A., Beck, R., Shukurov, A., Berkhuijsen, E. M., & Horellou, C. 2011, MNRAS, 412, 2396CrossRefGoogle Scholar
Goodson, A. P. & Winglee, R. M. 1999, ApJ, 524, 159Google Scholar
Hartmann, L. & MacGregor, K. B. 1980, ApJ, 242, 260Google Scholar
Heesen, V., Krause, M., Beck, R., & Dettmar, R.-J. 2009, A&A, 506, 1123Google Scholar
Hennebelle, P. & Fromang, S. 2008, A&A, 477, 9Google Scholar
Henning, Th., Linz, H., Krause, O., et al. 2010, A&A, 518, L95Google Scholar
Inutsuka, S. & Miyama, S. M. 1997, ApJ, 480, 681Google Scholar
Jappsen, A.-K. & Klessen, R. D. 2004, A&A, 423, 1Google Scholar
Johnstone, D., Wilson, C. D., Moriarty-Schieven, G., et al. 2000, ApJ, 545, 327Google Scholar
Joos, M., Hennebelle, P., & Ciardi, A. 2012, A&A, 543, A128Google Scholar
Kainulainen, J., Beuther, H., Henning, T., & Plume, R. 2009, A&A, 508, L35Google Scholar
Kevlahan, N. & Pudritz, R. E. 2009, ApJ, 702, 39Google Scholar
Kim, W.-T., Ostriker, E., & Stone, J. M. 2003, ApJ, 595, 574CrossRefGoogle Scholar
Kirk, H., Klassen, M., Pillsworth, S., & Pudriz, R. E., 2014, in preparation.Google Scholar
Klessen, R. S. & Burkert, A. 2000, ApJS, 128, 287Google Scholar
Königl, A. 1991, ApJ, 370, L39Google Scholar
Kritsuk, A., Norman, M. L., & Wagner, R. 2011, ApJL, 727, L20Google Scholar
Lemaster, M. N. & Stone, J. M. 2008, ApJ, 688, 905Google Scholar
Li, H.-b., Dowell, C. D., Goodman, A., Hildebrand, R., & Novak, G., 2009, ApJ, 704, 891Google Scholar
Li, Z-Y., Banerjee, R., Pudritz, R. E., Jorgensen, J. K., Shang, H., Krasnopolsky, R., Maury, A., 2014, in:Protostars and Planets VI, (edited by Beuther, H., Klessen, R., Dullemond, K., & Henning, T.), in press.Google Scholar
Lynden-Bell, D. 1996, MNRAS, 279, 389Google Scholar
Lynden-Bell, D. 2003, MNRAS, 341, 1360Google Scholar
Matt, S. & Pudritz, R. E. 2004, ApJL, 607, L43Google Scholar
Matt, S. & Pudritz, R. E. 2005, ApJL, 632, L135CrossRefGoogle Scholar
Matt, S. & Pudritz, R. E. 2008, ApJ 681, 391CrossRefGoogle Scholar
Matt, S., & Pudritz, R. E. 2008, ApJ, 678, 1109Google Scholar
Matzner, C. D. & McKee, C. F. 2000, ApJ, 545, 364Google Scholar
Mellon, R. R. & Li, Z.-Y. 2008, ApJ, 681, 1356Google Scholar
Men'shchikov, A., André, Ph., Didelon, P., et al. 2010, A&A, 518, L103Google Scholar
Motte, F., André, P., & Neri, R. 1998, A&A, 365, 440Google Scholar
Mouschovias, T. C. & Paleologou, E. V. 1980, ApJ, 237, 877Google Scholar
Padoan, P., Nordlund, A., & Jones, B. J. T. 1997, MNRAS, 288, 145Google Scholar
Padoan, P., Juvela, M., Goodman, A. A., & Nordlund, A. 2001, ApJ, 553, 227Google Scholar
Pelletier, G. & Pudritz, R. E. 1992, ApJ, 394, 117Google Scholar
Pudritz, R. E., Ouyed, R., Fendt, C., & Brandenburg, A. 2007, in: Protostars and Planets V, (edited by Reipurth, B., Jewitt, D., and Keil, K.), 277Google Scholar
Santos-Lima, R., de Gouveia Dal Pino, E. M., & Lazarian, A. 2012, ApJ, 747, 21Google Scholar
Schneider, N., André, Ph., Könyves, V., et al. 2013, ApJL, 766, L17CrossRefGoogle Scholar
Seifried, D., Banerjee, R., Pudritz, R. E., & Klessen, R. S. 2012a, MNRAS, 423, L40Google Scholar
Seifried, D., Pudritz, R. E., Banerjee, R., Duffin, D., & Klessen, R. S. 2012b, MNRAS, 422, 347Google Scholar
Sellwood, J. A. & Balbus, S. A. 1999, ApJ, 511, 660Google Scholar
Staff, J. E., Niebergal, B. P., Ouyed, R., Pudritz, R. E., & Cai, K. 2010, ApJ, 722, 1325Google Scholar
Sugitani, K., et al. 2011, ApJ, 734, 63Google Scholar
Ward-Thompson, D., Kirk, J. M., André, P.et al. 2010, A&A, 518, L92Google Scholar
Tilley, D. A. & Pudritz, R. E., 2004, MNRAS, 353, 769Google Scholar
Tilley, D. A. & Pudritz, R. E., 2007, MNRAS, 382, 73Google Scholar
Zanni, C. & Ferreira, J. 2009, A&A, 508, 1117Google Scholar
Zanni, C. & Ferreira, J. 2013, A&A, 550, 99Google Scholar