Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T06:12:18.108Z Has data issue: false hasContentIssue false

The role of nonlinear toroidal flux loss due to flux emergence in the long-term evolution of the solar cycle

Published online by Cambridge University Press:  23 December 2024

Akash Biswas*
Affiliation:
Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A striking feature of the solar cycle is that at the beginning, sunspots appear around mid-latitudes, and over time the latitudes of emergences migrate towards the equator. The maximum level of activity varies from cycle to cycle. For strong cycles, the activity begins early and at higher latitudes with wider sunspot distributions than for weak cycles. The activity and the width of sunspot belts increase rapidly and begin to decline when the belts are still at high latitudes. However, in the late stages of the cycles, the level of activity, and properties of the butterfly wings all have the same statistical properties independent of the peak strength of the cycles. We have modelled these features using Babcock–Leighton type dynamo model and shown that the toroidal flux loss from the solar interior due to magnetic buoyancy is an essential nonlinearity that leads to all the cycles decline in the same way.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Babcock, H. W. 1961, The Topology of the Sun’s Magnetic Field and the 22-YEAR Cycle. Astrophys. J., 133, 572.CrossRefGoogle Scholar
Bhowmik, P. & Nandy, D. 2018, Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions. Nature Communications, 9, 5209.CrossRefGoogle ScholarPubMed
Biswas, A., Karak, B. B., & Cameron, R. 2022, Toroidal Flux Loss due to Flux Emergence Explains why Solar Cycles Rise Differently but Decay in a Similar Way. Phys. Rev. Lett., 129(24), 241102.CrossRefGoogle ScholarPubMed
Biswas, A., Karak, B. B., & Kumar, P. 2023,a Exploring the reliability of polar field rise rate as a precursor for an early prediction of solar cycle. Mon. Not. R. Astron. Soc., 526a(3), 39944003.CrossRefGoogle Scholar
Biswas, A., Karak, B. B., Usoskin, I., & Weisshaar, E. 2023,b Long-Term Modulation of Solar Cycles. Space Sci. Rev., 219b(3), 19.Google Scholar
Cameron, R. H. & Schüssler, M. 2016, The turbulent diffusion of toroidal magnetic flux as inferred from properties of the sunspot butterfly diagram. Astron. Astrophys., 591, A46.CrossRefGoogle Scholar
Cameron, R. H. & Schüssler, M. 2020, Loss of toroidal magnetic flux by emergence of bipolar magnetic regions. Astron. Astrophys., 636, A7.CrossRefGoogle Scholar
Charbonneau, P. 2020, Dynamo models of the solar cycle. Living Reviews in Solar Physics, 17(1), 4.CrossRefGoogle Scholar
Chatterjee, P., Nandy, D., & Choudhuri, A. R. 2004, Full-sphere simulations of a circulation-dominated solar dynamo: Exploring the parity issue. Astron. Astrophys., 427, 10191030.CrossRefGoogle Scholar
Choudhuri, A. R., Chatterjee, P., & Jiang, J. 2007, Predicting Solar Cycle 24 With a Solar Dynamo Model. Physical Review Letters, 98(13), 131103.CrossRefGoogle ScholarPubMed
Garg, S., Karak, B. B., Egeland, R., Soon, W., & Baliunas, S. 2019, Waldmeier Effect in Stellar Cycles. arXiv e-prints,, arXiv:1909.12148.Google Scholar
Golubeva, E. M., Biswas, A., Khlystova, A. I., Kumar, P., & Karak, B. B. 2023, Probing the variations in the timing of the Sun’s polar magnetic field reversals through observations and surface flux transport simulations. Mon. Not. R. Astron. Soc., 525(2), 17581768.CrossRefGoogle Scholar
Hathaway, D. H. 2015, The Solar Cycle. Living Reviews in Solar Physics, 12(1), 4.CrossRefGoogle ScholarPubMed
Jiang, J. 2020, Nonlinear Mechanisms that Regulate the Solar Cycle Amplitude. Astrophys. J., 900(1), 19.CrossRefGoogle Scholar
Karak, B. B. 2010, Importance of Meridional Circulation in Flux Transport Dynamo: The Possibility of a Maunder-like Grand Minimum. Astrophys. J., 724, 10211029.CrossRefGoogle Scholar
Karak, B. B. 2020, Dynamo Saturation through the Latitudinal Variation of Bipolar Magnetic Regions in the Sun. Astrophys. J. Lett., 901(2), L35.CrossRefGoogle Scholar
Karak, B. B. 2023, Models for the long-term variations of solar activity. Living Reviews in Solar Physics, 20(1), 3.CrossRefGoogle Scholar
Karak, B. B. & Choudhuri, A. R. 2011, The Waldmeier effect and the flux transport solar dynamo. Mon. Not. R. Astron. Soc., 410, 15031512.Google Scholar
Karak, B. B. & Choudhuri, A. R. 2012, Quenching of Meridional Circulation in Flux Transport Dynamo Models. Sol. Phys., 278, 137148.CrossRefGoogle Scholar
Karak, B. B., Mandal, S., & Banerjee, D. 2018, Double Peaks of the Solar Cycle: An Explanation from a Dynamo Model. Astrophys. J., 866(1), 17.CrossRefGoogle Scholar
Karak, B. B. & Miesch, M. 2018, Recovery from Maunder-like Grand Minima in a Babcock–Leighton Solar Dynamo Model. Astrophys. J. Lett., 860, L26.CrossRefGoogle Scholar
Kumar, P., Biswas, A., & Karak, B. B. 2022, Physical link of the polar field buildup with the Waldmeier effect broadens the scope of early solar cycle prediction: Cycle 25 is likely to be slightly stronger than Cycle 24. Mon. Not. R. Astron. Soc., 513(1), L112L116.CrossRefGoogle Scholar
Kumar, P., Nagy, M., Lemerle, A., Karak, B. B., & Petrovay, K. 2021, The Polar Precursor Method for Solar Cycle Prediction: Comparison of Predictors and Their Temporal Range. Astrophys. J., 909(1), 87.CrossRefGoogle Scholar
Leighton, R. B. 1969, A Magneto-Kinematic Model of the Solar Cycle. Astrophys. J., 156, 1.CrossRefGoogle Scholar
Mandal, S., Karak, B. B., & Banerjee, D. 2017, Latitude Distribution of Sunspots: Analysis Using Sunspot Data and a Dynamo Model. Astrophys. J., 851, 70.CrossRefGoogle Scholar
Mordvinov, A. V., Karak, B. B., Banerjee, D., Golubeva, E. M., Khlystova, A. I., Zhukova, A. V., & Kumar, P. 2022, Evolution of the Sun’s activity and the poleward transport of remnant magnetic flux in Cycles 21-24. Mon. Not. R. Astron. Soc., 510(1), 13311339.CrossRefGoogle Scholar
Nandy, D. & Choudhuri, A. R. 2002, Explaining the Latitudinal Distribution of Sunspots with Deep Meridional Flow. Science, 296(5573), 16711673.CrossRefGoogle ScholarPubMed
Usoskin, I. G. 2013, A History of Solar Activity over Millennia. Living Reviews in Solar Physics, 10, 1.CrossRefGoogle Scholar
Vashishth, V., Karak, B. B., & Kitchatinov, L. 2021, Subcritical dynamo and hysteresis in a Babcock–Leighton type kinematic dynamo model. Research in Astronomy and Astrophysics, 21(10), 266.CrossRefGoogle Scholar
Vashishth, V., Karak, B. B., & Kitchatinov, L. 2023, Dynamo modelling for cycle variability and occurrence of grand minima in Sun-like stars: rotation rate dependence. Mon. Not. R. Astron. Soc., 522(2), 26012610.CrossRefGoogle Scholar
Waldmeier, M. 1935, Neue Eigenschaften der Sonnenfleckenkurve. Astronomische Mitteilungen der Eidgenössischen Sternwarte Zurich, 14, 105136.Google Scholar
Waldmeier, M. 1955, Ergebnisse und Probleme der Sonnenforschung. Ergebnisse und Probleme der Sonnenforschung (Leipzig: Geest & Portig).Google Scholar