Published online by Cambridge University Press: 24 July 2018
The largest solar flares, of class X and above, are often associated with strong energetic particle acceleration. Based on the self-similar distribution of solar flares, self-organized criticality models such as sandpiles can be used to successfully reproduce their statistics. However, predicting strong (and rare) solar flares turns out to be a significant challenge. We build here on an original idea based on the combination of minimalistic flare models (sandpiles) and modern data assimilation techniques (4DVar) to predict large solar flares. We discuss how to represent a sandpile model over a reduced set of eigenfunctions to improve the efficiency of the data assimilation technique. This improvement is model-independent and continues to pave the way towards efficient near real-time solutions for predicting solar flares.