Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T03:30:27.270Z Has data issue: false hasContentIssue false

Searching for emission line and OB stars in Cl 1806-20 using a NIR narrow-band technique

Published online by Cambridge University Press:  12 July 2011

Michelle L. Edwards
Affiliation:
Gemini Observatory, Southern Operations Center, La Serena, Chile email: medwards@gemini.edu Department of Astronomy, University of Florida, Gainesville, FL 32611
Reba M. Bandyopadhyay
Affiliation:
Department of Astronomy, University of Florida, Gainesville, FL 32611
Stephen S. Eikenberry
Affiliation:
Department of Astronomy, University of Florida, Gainesville, FL 32611
Valerie J. Mikles
Affiliation:
Department of Astronomy, University of Florida, Gainesville, FL 32611 Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803
Dae-Sik Moon
Affiliation:
Department of Astronomy and Astrophysics, University of Toronto, Toronto M5S3H8, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We survey the environment of Cl 1806-20 using near-infrared narrow-band imaging to search for Brγ features indicative of evolved massive stars. Using this technique, we successfully detect previously identified massive stars in the cluster. We detect no new emission line stars, establishing a firm upper limit on the number of Wolf Rayets and Luminous Blue Variables; however, we do find several candidate OB supergiants, which likely represent the bulk of the heretofore undiscovered massive star population.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Blum, R. D., Schaerer, D., Pasquali, A., Heydari-Malayeri, M. et al. 2001, AJ, 122, 1875CrossRefGoogle Scholar
Corbel, S. & Eikenberry, S. S. 2004, A&A, 419, 191Google Scholar
Eikenberry, S. S., Matthews, K., LaVine, J. L., Garske, M. A. et al. 2004, ApJ, 616, 506CrossRefGoogle Scholar
Figer, D. F., McLean, I. S., & Najarro, F. 1997, ApJ, 486, 420CrossRefGoogle Scholar
Figer, D. F., Najarro, F., Geballe, T. R., Blum, R. D. et al. 2005, ApJ (Letters) 622, L49CrossRefGoogle Scholar
Fuchs, Y., Mirabel, F., Chaty, S., Claret, A. et al. 1999, A&A, 350, 891Google Scholar
Hanson, M. M., Conti, P. S., & Rieke, M. J. 1996, ApJS, 107, 281CrossRefGoogle Scholar
Stetson, P. B. 1987, PASP, 99, 191CrossRefGoogle Scholar
Stetson, P. B. 1992, in: Worrall, D. M., Biemesderfer, C., & Barnes, J. (eds.), Astronomical Data Analysis Software and Systems I, ASP-CS 25, p. 297Google Scholar
Wilson, J. C., Eikenberry, S. S., Henderson, C. P., Hayward, T. L. et al. 2003, in: Iye, M. & Moorwood, A. F. M. (eds.), Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, SPIE Conference Series 4841, p. 451Google Scholar