Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T09:46:01.754Z Has data issue: false hasContentIssue false

Searching for intermediate mass black holes: understanding the data first

Published online by Cambridge University Press:  07 March 2016

Paolo Bianchini
Affiliation:
Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany email: bianchini@mpia.de
Mark Norris
Affiliation:
Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany email: bianchini@mpia.de
Glenn van de Ven
Affiliation:
Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany email: bianchini@mpia.de
Eva Schinnerer
Affiliation:
Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany email: bianchini@mpia.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The detection of intermediate mass black holes (IMBHs) in globular clusters has been hotly debated, with different observational methods delivering different outcomes for the same object. In order to understand these discrepancies, we construct detailed mock integral field spectroscopy (IFU) observations of globular clusters, starting from realistic Monte Carlo cluster simulations. The output is a data cube of spectra in a given field-of-view that can be analyzed in the same manner as real observations and compared to other (resolved) kinematic measurement methods. We show that the main discrepancies arise because the luminosity-weighted IFU observations can be strongly biased by the presence of a few bright stars that introduce a scatter in velocity dispersion measurements of several km s−1. We show that this intrinsic scatter can prevent a sound assessment of the central kinematics, and therefore should be fully taken into account to correctly interpret the signature of an IMBH.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bahcall, J. N. & Wolf, R. A. 1976, ApJ, 209, 214Google Scholar
Bianchini, P., Varri, A. L., Bertin, G., & Zocchi, A. 2013, ApJ, 772, 67Google Scholar
Bianchini, P., Norris, M., van de Ven, G., & Schinnerer, E. in preparationGoogle Scholar
Cappellari, M. & Emsellem, E. 2004, PASP, 116, 138Google Scholar
den Brok, M., van de Ven, G., van den Bosch, R., et al. 2014, MNRAS, 438, 487Google Scholar
Downing, J. M. B., Benacquista, M. J., Giersz, M., & Spurzem, R. 2010, MNRAS, 407, 1946Google Scholar
Fabricius, M. H., Noyola, E., Rukdee, S., et al. 2014, ApJ (Letters) 787, L26Google Scholar
Ferrarese, L. & Merritt, D. 2000, ApJ (Letters) 539, L9Google Scholar
Gebhardt, K., Pryor, C., O'Connell, R. D., Williams, T. B., et al. 2000, AJ, 119, 1268Google Scholar
Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008, A&A, 486, 951Google Scholar
Kacharov, N., Bianchini, P., Koch, A., et al. 2014, A&A, 567, 69Google Scholar
Kotulla, R., Fritze, U., Weilbacher, P., & Anders, P. 2009, MNRAS, 396, 462Google Scholar
Kroupa, P. 2001, MNRAS, 322, 231CrossRefGoogle Scholar
Lanzoni, B.Mucciarelli, A., et al. 2013, ApJ, 769, 107Google Scholar
Lützgendorf, N., Kissler-Patig, M., Noyola, E., et al. 2011, A&A, 533, 36Google Scholar
Lützgendorf, N., Kissler-Patig, M., Gebhardt, K., et al. 2013, A&A, 552, 49Google Scholar
Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, AJ, 115, 2285Google Scholar
Noyola, E., Gebhardt, K., Kissler-Patig, M., et al. 2010, ApJ (Letters) 719, L60Google Scholar
Plummer, H. C. 1911, MNRAS, 71, 460Google Scholar
van den Bosch, R., de Zeeuw, T.Gebhardt, K., et al. 2006, ApJ, 641, 852Google Scholar
van der Marel, R. P. & Anderson, J. 2010, ApJ, 710, 1063Google Scholar