Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T19:22:13.361Z Has data issue: false hasContentIssue false

Secular evolution in galaxies

Published online by Cambridge University Press:  01 August 2006

F. Combes*
Affiliation:
LERMA, Observatoire de Paris, 61 Av. de l'Observatoire, F-75014, Paris, France email: francoise.combes@obspm.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

New observations in favour of a significant role of secular evolution are reviewed: central star formation boosted in pseudo-bulge barred galaxies, relations between bulge and disk, evidence for rejuvenated bulges. Numerical simulations have shown that secular evolution can occur through a cycle of bar formation and destruction, in which the gas plays a major role. Since bars are weakened or destroyed in gaseous disks, the high frequency of bars observed today requires external cold gas accretion, to replenish the disk and allow a new bar formation. The rate of gas accretion from external filaments is compatible with what is observed in cosmological simulations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Athanassoula, E., Lambert, J. C., & Dehnen, W.: 2005, MNRAS 363, 496CrossRefGoogle Scholar
Berentzen, I., Heller, C. H., Shlosman, I., & Fricke, K. J.: 1998, MNRAS 300, 49CrossRefGoogle Scholar
Block, D., Bournaud, F., & Combes, F.: 2002 A&A 394, L35Google Scholar
Bournaud, F., & Combes, F.: 2002, A&A 392, 83Google Scholar
Bournaud, F., Combes, F., & Semelin, B.: 2005, MNRAS 364, L18Google Scholar
Buta, R., Laurikainen, E., & Salo, H.: 2004, AJ 127, 279CrossRefGoogle Scholar
Debattista, V.P., MayerL., C. L., C. & Carollo, M. 2006, ApJ, in press (astro-ph/0509310)Google Scholar
Erwin, P.: 2005, MNRAS 364, 283CrossRefGoogle Scholar
Eskridge, P. B., Frogel, J. A., & Pogge, R. W.: 2002 ApJS 143, 73CrossRefGoogle Scholar
Fisher, D.B.: 2006 ApJ 642, L17CrossRefGoogle Scholar
Friedli, D., Benz, W., & Kennicutt, R.: 1994 ApJ 430, L105CrossRefGoogle Scholar
Hasan, H., Pfenniger, D., & Norman, C.: 1993, ApJ 409, 91Google Scholar
Hozumi, & Hernquist, 2005 PASJ 57, 719CrossRefGoogle Scholar
Kormendy, J., & Kennicutt, R.: 2004, ARAA 42, 603Google Scholar
Kormendy, J., Cornell, M. E., & Block, D. L.: 2006 ApJ 642, 765Google Scholar
MacArthur, L. A., Courteau, S., & Holtzman, J. A.: 2003, ApJ 582, 689CrossRefGoogle Scholar
Marinova, I., & Jogee, S.: 2006, ApJ, in press (astro-ph/0608039)Google Scholar
Proctor, R. N., Sansom, A. E., & Reid, I. N.: 2000 MNRAS 311, 37CrossRefGoogle Scholar
Proctor, R.N., & Sansom, A.E.: 2002 MNRAS 333, 517CrossRefGoogle Scholar
Regan, M., Thornley, M., & Vogel, S.N.: 2006, ApJ in prepGoogle Scholar
Semelin, B., & Combes, F.: 2005 A&A 441, 55Google Scholar
Shen, J., & Sellwood, J.A.: 2004 ApJ 604, 614Google Scholar
Toth, G., & Ostriker, J.P.: 1992 ApJ 389, 5CrossRefGoogle Scholar
Thomas, D., & Davies, R.L.: 2006 MNRAS 366, 510Google Scholar
Whyte, L. F., Abraham, R. G., & Merrifield, M. R.: 2002, MNRAS 336, 1281Google Scholar