Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T22:51:37.766Z Has data issue: false hasContentIssue false

Shapes and Centroids of 39 Strong Lensing Galaxy Clusters from the Sloan Giant Arcs Survey

Published online by Cambridge University Press:  04 March 2024

Raven Gassis*
Affiliation:
Department of Physics, University of Cincinnati
Matthew B. Bayliss
Affiliation:
Department of Physics, University of Cincinnati
Keren Sharon
Affiliation:
Department of Astronomy, University of Michigan
Guillaume Mahler
Affiliation:
Centre for Extragalactic Astronomy, Durham University
Michael D. Gladders
Affiliation:
Department of Astronomy and Astrophysics/Kavli Institute for Cosmological Physics, University of Chicago
Håkon Dahle
Affiliation:
Institute of Theoretical Astrophysics, University of Oslo
Michael K. Florian
Affiliation:
Steward Observatory
Jane R. Rigby
Affiliation:
University of Arizona, Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center
Lauren Elicker
Affiliation:
Department of Physics, University of Cincinnati
M. Riley Owens
Affiliation:
Department of Physics, University of Cincinnati
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Strong lensing galaxy clusters provide a powerful observational test of Cold Dark Matter (CDM) structure predictions derived from simulation. Specifically, the shape and relative alignments of the dark matter halo, stars, and hot intracluster gas tells us the extent to which theoretical structure predictions hold for clusters in various dynamical states. We measure the position angles, ellipticities, and locations/centroids of the brightest cluster galaxy (BCG), intracluster light (ICL), the hot intracluster medium (ICM), and the core lensing mass for a sample of strong lensing galaxy clusters from the SDSS Giant Arcs Survey (SGAS). We use iterative elliptical isophote fitting methods and GALFIT modeling on HST WFC3/IR imaging data to extract ICL and BCG information and use CIAO’s Sherpa modeling on Chandra ACIS-I X-ray data to make measurements of the ICM. Using this multicomponent approach, we attempt to constrain the physical state of these strong lensing clusters and evaluate the different observable components in terms of their ability to trace out the gravitational potential of the cluster.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Arena, S. E. & Bertin, G. 2007, Slow evolution of elliptical galaxies induced by dynamical friction. III. Role of density concentration and pressure anisotropy. AAP, 463(3), 921935.CrossRefGoogle Scholar
Beers, T. & Geller, M. 1983, The environment of d and cd galaxies. ApJ, 274, 491.CrossRefGoogle Scholar
Biernacka, M., Panko, E., Bajan, K., Goddłowski, W., & Flin, P. 2015, The alignment of galaxy structures. ApJ, 813(1), 20.CrossRefGoogle Scholar
Binggeli, B. 1982, The shape and orientation of clusters of galaxies. PASP, 107, 338.Google Scholar
Churazov, E., Forman, W., Jones, C., & Böhringer, H. 2003, Xmm-newton observations of the perseus cluster. i. the temperature and surface brightness structure. ApJ, 590(1), 225.CrossRefGoogle Scholar
Contini, E., Chen, H. Z., & Gu, Q. 2022, The transition region between brightest cluster galaxies and intracluster light in galaxy groups and clusters. ApJ, 928, 99.CrossRefGoogle Scholar
De Propris, R., West, M. J., Andrade-Santos, F., Ragone-Figueroa, C., Rasia, E., Forman, W., Jones, C., Kipper, R., Borgani, S., Lambas, D. G., Romashkova, E. A., & Patra, K. C. 2021, Brightest cluster galaxies: the centre can(not?) hold. MNRAS, 500(1), 310318.CrossRefGoogle Scholar
Donahue, M., Ettori, S., Rasia, E., Sayers, J., Zitrin, A., Meneghetti, M., Voit, G. M., Golwala, S., Czakon, N., Yepes, G., Baldi, A., Koekemoer, A., & Postman, M. 2016, The morphologies and alignments of gas, mass, and the central galaxies of clash clusters of galaxies. ApJ, 819(1), 36.CrossRefGoogle Scholar
Harvey, D., Courbin, F., Kneib, J. P., & McCarthy, I. G. 2017, A detection of wobbling brightest cluster galaxies within massive galaxy clusters. MNRAS, 472(2), 19721980.CrossRefGoogle Scholar
Hashimoto, Y., Henry, J. P., & Boehringer, H. 2008, Alignment of galaxies and clusters. MNRAS, 390(4), 15621568.Google Scholar
Hashimoto, Y., Henry, J. P., & Boehringer, H. 2014, Multiwavelength investigations of co-evolution of bright cluster galaxies and their host clusters. MNRAS, 440(1), 588600.CrossRefGoogle Scholar
Hikage, C., Mandelbaum, R., Takada, M., & Spergel, D. N. 2013, Where are the Luminous Red Galaxies (LRGs)? Using correlation measurements and lensing to relate LRGs to dark matter haloes. MNRAS, 435(3), 23452370.CrossRefGoogle Scholar
Hoshino, H., Leauthaud, A., Lackner, C., Hikage, C., Rozo, E., Rykoff, E., Mandelbaum, R., More, S., More, A., Saito, S., & Vulcani, B. 2015, Luminous red galaxies in clusters: central occupation, spatial distributions and miscentring. MNRAS, 452(1), 9981013.CrossRefGoogle Scholar
Johnson, R. E., Zuhone, J., Jones, C., Forman, W. R., & Markevitch, M. 2012, Sloshing gas in the core of the most luminous galaxy cluster rxj1347.5-1145. MNRAS, 751(2), 95.Google Scholar
Jullo, E., Kneib, J.-P., Limousin, M., Elasdóttir, Á., Marshall, P. J., & Verdugo, T. 2007, A bayesian approach to strong lensing modelling of galaxy clusters. New J. Phys., 9(12), 447.CrossRefGoogle Scholar
Kim, S. Y., Peter, A. H. G., & Wittman, D. 2017, In the wake of dark giants: new signatures of dark matter self-interactions in equal-mass mergers of galaxy clusters. MNRAS, 469(2), 14141444.CrossRefGoogle Scholar
Lange, J. U., van den Bosch, F. C., Hearin, A., Campbell, D., Zentner, A. R., Villarreal, A. S., & Mao, Y.-Y. 2018, Brightest galaxies as halo centre tracers in SDSS DR7. MNRAS, 473(2), 28302851.CrossRefGoogle Scholar
Lauer, T. R., Postman, M., Strauss, M. A., Graves, G. J., & Chisari, N. E. 2014, Brightest cluster galaxies at the present epoch. ApJ, 797(2), 82.CrossRefGoogle Scholar
Lopes, P. A. A., Trevisan, M., Laganá, T. F., Durret, F., Ribeiro, A. L. B., & Rembold, S. B. 2018, Optical substructure and BCG offsets of Sunyaev–Zel’dovich and X-ray-selected galaxy clusters. MNRAS, 478(4), 54735490.CrossRefGoogle Scholar
Markevitch, M. & Vikhlinin, A. 2007, Shocks and cold fronts in galaxy clusters. Phys. Rep., 443(1), 153.CrossRefGoogle Scholar
Markevitch, M., Vikhlinin, A., & Mazzotta, P. 2001, Nonhydrostatic gas in the core of the relaxed galaxy cluster a1795. ApJ, 562(2), L153.CrossRefGoogle Scholar
Martel, H., Robichaud, F., & Barai, P. 2014, Major cluster mergers and the location of the brightest cluster galaxy. ApJ, 786(2), 79.CrossRefGoogle Scholar
Montes, M. & Trujillo, I. 2018, Intracluster light: a luminous tracer for dark matter in clusters of galaxies. MNRAS, 482(2), 28382851.CrossRefGoogle Scholar
Niederste-Ostholt, M., Strauss, M. A., Dong, F., Koester, B. P., & McKay, T. A. 2010, Alignment of brightest cluster galaxies with their host clusters. MNRAS, 405(3), 20232036.Google Scholar
Oliva-Altamirano, P., Brough, S., Lidman, C., Couch, W. J., Hopkins, A. M., Colless, M., Taylor, E., Robotham, A. S. G., Gunawardhana, M. L. P., Ponman, T., Baldry, I., Bauer, A. E., Bland-Hawthorn, J., Cluver, M., Cameron, E., Conselice, C. J., Driver, S., Edge, A. C., Graham, A. W., van Kampen, E., Lara-López, M. A., Liske, J., López-Sánchez, A. R., Loveday, J., Mahajan, S., Peacock, J., Phillipps, S., Pimbblet, K. A., & Sharp, R. G. 2014, Galaxy And Mass Assembly (GAMA): testing galaxy formation models through the most massive galaxies in the Universe. MNRAS, 440(1), 762775.CrossRefGoogle Scholar
Rossetti, M., Gastaldello, F., Ferioli, G., Bersanelli, M., De Grandi, S., Eckert, D., Ghizzardi, S., Maino, D., & Molendi, S. 2016, Measuring the dynamical state of Planck SZ-selected clusters: X-ray peak – BCG offset. MNRAS, 457(4), 45154524.CrossRefGoogle Scholar
Sanderson, A. J. R., Edge, A. C., & Smith, G. P. 2009, LoCuSS: the connection between brightest cluster galaxy activity, gas cooling and dynamical disturbance of X-ray cluster cores. MNRAS, 398(4), 16981705.CrossRefGoogle Scholar
Sastry, G. N. 1968, Clusters associated with supergiant galaxies. PASP, 80(474), 252.CrossRefGoogle Scholar
Sharon, K., Bayliss, M. B., Dahle, H., Dunham, S. J., Florian, M. K., Gladders, M. D., Johnson, T. L., Mahler, G., Paterno-Mahler, R., Rigby, J. R., Whitaker, K. E., Akhshik, M., Koester, B. P., Murray, K., González, J. D. R., & Wuyts, E. 2020, Strong lens models for 37 clusters of galaxies from the sdss giant arcs survey*. ApJS, 247(1), 12.CrossRefGoogle Scholar
Sharon, K., Cerny, C., Rigby, J. R., Florian, M. K., Bayliss, M. B., Dahle, H., Gladders, M. D., & Mahler, G. 2022,a HST-Based Lens Model of SDSS J1226+2152, in Preparation for JWST-ERS TEMPLATES. arXiv e-prints, arXiv:2207.05709.Google Scholar
Sharon, K., Mahler, G., Rivera-Thorsen, T. E., Dahle, H., Gladders, M. D., Bayliss, M. B., Florian, M. K., Kim, K. J., Khullar, G., Mainali, R., Napier, K. A., Navarre, A., Rigby, J. R., Remolina González, J. D., & Sharma, S. 2022,b The Cosmic Telescope That Lenses the Sunburst Arc, PSZ1 G311.65-18.48: Strong Gravitational Lensing Model and Source Plane Analysis. ApJ, 941b(2), 203.CrossRefGoogle Scholar
Skibba, R. A., van den Bosch, F. C., Yang, X., More, S., Mo, H., & Fontanot, F. 2011, Are brightest halo galaxies central galaxies? MNRAS, 410(1), 417431.CrossRefGoogle Scholar
Van Den Bosch, F. C., Weinmann, S. M., Yang, X., Mo, H. J., Li, C., & Jing, Y. P. 2005, The phase-space parameters of the brightest halo galaxies. MNRAS, 361(4), 12031215.CrossRefGoogle Scholar
Wang, L., Yang, X., Shen, S., Mo, H. J., van den Bosch, F. C., Luo, W., Wang, Y., Lau, E. T., Wang, Q. D., Kang, X., & Li, R. 2014, Measuring the X-ray luminosities of SDSS DR7 clusters from ROSAT All Sky Survey. MNRAS, 439(1), 611622.CrossRefGoogle Scholar
Wang, P., Luo, Y., Kang, X., Libeskind, N. I., Wang, L., Zhang, Y., Tempel, E., & Guo, Q. 2018, Alignment between satellite and central galaxies in the sdss dr7: Dependence on large-scale environment. ApJ, 859(2), 115.CrossRefGoogle Scholar
Wittman, D., Foote, D., & Golovich, N. 2019, Brightest cluster galaxy alignments in merging clusters. ApJ, 874(1), 84.CrossRefGoogle Scholar
Zenteno, A., Hernández-Lang, D., Klein, M., Vergara Cervantes, C., Hollowood, D. L., Bhargava, S., Palmese, A., Strazzullo, V., Romer, A. K., Mohr, J. J., Jeltema, T., Saro, A., Lidman, C., Gruen, D., Ojeda, V., Katzenberger, A., Aguena, M., Allam, S., Avila, S., Bayliss, M., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Capasso, R., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Eifler, T. F., Evrard, A. E., Flaugher, B., Floyd, B., Fosalba, P., Frieman, J., Garca-Bellido, J., Gerdes, D. W., Gonzalez, J. R., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hinton, S. R., Honscheid, K., James, D. J., Kuehn, K., Lahav, O., Lima, M., McDonald, M., Maia, M. A. G., March, M., Melchior, P., Menanteau, F., Miquel, R., Ogando, R. L. C., Paz-Chinchón, F., Plazas, A. A., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Varga, T. N., Walker, A. R., Wilkinson, R. D., & Collaboration), D. 2020, A joint SZ–X-ray–optical analysis of the dynamical state of 288 massive galaxy clusters. MNRAS, 495(1), 705725.CrossRefGoogle Scholar
Zitrin, A., Bartelmann, M., Umetsu, K., Oguri, M., & Broadhurst, T. 2012, Miscentring in galaxy clusters: dark matter to brightest cluster galaxy offsets in 10000 Sloan Digital Sky Survey clusters. MNRAS, 426(4), 29442956.CrossRefGoogle Scholar