Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T21:28:32.079Z Has data issue: false hasContentIssue false

Similar phenomena at different scales: black holes, the Sun, γ-ray bursts, supernovae, galaxies and galaxy clusters

Published online by Cambridge University Press:  01 August 2006

Shuang Nan Zhang*
Affiliation:
Physics Department and Center for Astrophysics, Tsinghua University, Beijing, 100084, China email: zhangsn@tsinghua.edu.cn Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many similar phenomena occur in astrophysical systems with spatial and mass scales different by many orders of magnitudes. For examples, collimated outflows are produced from the Sun, proto-stellar systems, gamma-ray bursts, neutron star and black hole X-ray binaries, and supermassive black holes; various kinds of flares occur from the Sun, stellar coronae, X-ray binaries and active galactic nuclei; shocks and particle acceleration exist in supernova remnants, gamma-ray bursts, clusters of galaxies, etc. In this report I summarize briefly these phenomena and possible physical mechanisms responsible for them. I emphasize the importance of using the Sun as an astrophysical laboratory in studying these physical processes, especially the roles magnetic fields play in them; it is quite likely that magnetic activities dominate the fundamental physical processes in all of these systems.

As a case study, I show that X-ray lightcurves from solar flares, black hole binaries and gamma-ray bursts exhibit a common scaling law of non-linear dynamical properties, over a dynamical range of several orders of magnitudes in intensities, implying that many basic X-ray emission nodes or elements are inter-connected over multi-scales. A future high timing and imaging resolution solar X-ray instrument, aimed at isolating and resolving the fundamental elements of solar X-ray lightcurves, may shed new lights onto the fundamental physical mechanisms, which are common in astrophysical systems with vastly different mass and spatial scales. Using the Sun as an astrophysical laboratory, “Applied Solar Astrophysics” will deepen our understanding of many important astrophysical problems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Albert, R., & Barabasi, A.L. 2002, Rev. Mod. Phys., 74, 47CrossRefGoogle Scholar
Argollo de Menezes, M., & Barabasi, A.L. 2004, Phys. Rev. Lett., 93, 068701CrossRefGoogle Scholar
Aschenbach, B., Grosso, N., Porquet, D., & Predehl, P. 2004, A&A, 417, 71Google Scholar
Aschwanden, M.J., Nightingale, R.W., Tarbell, T.D., & Wolfson, C.J. 2000a, ApJ, 535, 1027CrossRefGoogle Scholar
Aschwanden, M.J., Tarbell, T.D., Nightingale, R.W., et al. 2000b, ApJ, 535, 1047CrossRefGoogle Scholar
Bak, P., Tang, C., & Wiesenfeld, K. 1988, Phys. Rev. A, 38, 364CrossRefGoogle Scholar
Bassani, L., Malaguti, G., Paciesas, W.S., Palumbo, G.G.C., & Zhang, S.N. 1996, A&AS, 120C, 559Google Scholar
Burrows, C.J. 1995, ApJ, 452, 680CrossRefGoogle Scholar
Benz, A.O., & Krucker, S. 2002, ApJ, 568, 413CrossRefGoogle Scholar
Charbonneau, P., McIntosh, S.W., Liu, H.-L., & Bogdan, T.J. 2001, Sol. Phys., 203, 321CrossRefGoogle Scholar
Chen, P.F., & Shibata, K. 2000, ApJ, 545, 524CrossRefGoogle Scholar
Chen, P.F., Fang, C., & Ding, M.D. 2001, ChJAA, 1, 176Google Scholar
Chen, X., Zhang, S.N., & Ding, G.Q. 2006, ApJ, 650, 299CrossRefGoogle Scholar
Christensen, K., Olami, Z., & Bak, P. 1992, Phys. Rev. Lett., 68, 2417CrossRefGoogle Scholar
Cranmer, S.R., & van Ballegooijen, A.A. 2005, ApJS, 156, 265CrossRefGoogle Scholar
Dai, Z.G., Wang, X.Y., Wu, X.F., & Zhang, B. 2006, Science, 311, 1127CrossRefGoogle Scholar
Dennis, B.R., Hudson, H.S., & Krucker, S. 2005, in: Proc. CESRA Workshop 2004, Isle of Skye, Scotland Review of selected RHESSI solar resultsGoogle Scholar
di Matteo, T., Celotti, A., & Fabian, A.C. 1999, MNRAS, 304, 809CrossRefGoogle Scholar
Doi, K. 1978, Nature, 275, 197CrossRefGoogle Scholar
Edelson, R., Turner, T.J., Pounds, K.A., et al. 2002, ApJ, 568, 610CrossRefGoogle Scholar
Feng, H., Zhang, S., Lou, Y., & Li, T. 2004, ApJl (Letters), 607, L95CrossRefGoogle Scholar
Gierlinski, M., & Zdziarski, A.A. 2003, MNRAS (Letters) 343, L84CrossRefGoogle Scholar
Haardt, F., Maraschi, L., & Ghisellini, G. 1997, ApJ, 476, 620CrossRefGoogle Scholar
Harmon, B.A, Wilson, C.A., Zhang, S.N., Paciesas, W.S., Fishman, G.J., Hjellming, R.M., Rupen, M.P., Scott, D.M., Briggs, M.S., & Rubin, B.C. 1995, Nature, 374, 703CrossRefGoogle Scholar
Hawley, J.F., Balbus, S.A., & Winters, W.F. 1999, ApJ, 518, 394CrossRefGoogle Scholar
Hurley, K., Dingus, B.L., Mukherjee, R., et al. 1994, Nature, 372, 652CrossRefGoogle Scholar
Katsukawa, Y. 2003, PASJ, 55, 1025CrossRefGoogle Scholar
Katsukawa, Y., & Tsuneta, S. 2001, ApJ, 557, 343CrossRefGoogle Scholar
Katz, J.I. 1997, ApJ, 490, 633CrossRefGoogle Scholar
Katz, J.I. 2006, [astro-ph/0603772]Google Scholar
Klimchuk, J.A. 2006, Sol. Phys., 234, 41CrossRefGoogle Scholar
Kotov, O., Churazov, E., & Gilfanov, M. 2001, MNRAS, 327, 799CrossRefGoogle Scholar
Krucker, S., & Benz, A.O. 1998, ApJl, 501, L213CrossRefGoogle Scholar
Kubota, A., Makishima, K., & Ebisawa, K. 2001, ApJ (Letters), 560, L147CrossRefGoogle Scholar
Kumar, P., McMahon, E., Panaitescu, A., et al. 2007, MNRAS (Letters) 376, L57CrossRefGoogle Scholar
Liang, E.P.T., & Price, R.H. 1977, ApJ, 218, 247CrossRefGoogle Scholar
Lin, R.P., Dennis, B.R., Hurford, G.J., et al. 2002, Sol. Phys., 210, 3CrossRefGoogle Scholar
Lin, J.R., Zhang, S.N., & Li, T.P. 2004, ApJ, 605, 819CrossRefGoogle Scholar
Liu, C.Z., & Li, T.P. 2004, ApJ, 611, 1084CrossRefGoogle Scholar
Liu, B.F., Mineshige, S., & Ohsuga, K. 2003, ApJ, 587, 571CrossRefGoogle Scholar
Liu, Y., Zhang, S.N., & Zhang, X.L. 2007, PASJ, 59, 185CrossRefGoogle Scholar
Lyubarskii, Y.E. 1997, MNRAS, 292, 679CrossRefGoogle Scholar
Margon, B., Bowyer, S., & Stone, R.P.S. 1973, ApJl 185, L113CrossRefGoogle Scholar
Meier, D.L., Koide, K., & Uchida, Y. 2001, Science, 291, 84CrossRefGoogle Scholar
Markovskii, S.A., & Hollweg, J.V. 2004, ApJ, 609, 1112CrossRefGoogle Scholar
Mineshige, S., Ouchi, N.B., & Nishimori, H. 1994, PASJ, 46, 97Google Scholar
Meszaros, P. 2001, Science, 291, 5CrossRefGoogle Scholar
Mirabel, I.F., & Rodriguez, L.F. 1998, Nature, 392, 673CrossRefGoogle Scholar
Mirabel, I.F., & Rodriguez, L.F. 2002, Sky & Telescope, May 2002, 32Google Scholar
Miyamoto, S., Kitamoto, S., Mitsuda, K., & Dotani, T. 1988, Nature, 336, 450CrossRefGoogle Scholar
Nayakshin, S., & Melia, F. 1997, ApJ (Letters), 490, L13CrossRefGoogle Scholar
Negoro, H., Kitamoto, S., & Mineshige, S. 2001, ApJ, 554, 528CrossRefGoogle Scholar
Parker, E.N. 1983, ApJ, 264, 642CrossRefGoogle Scholar
Parker, E.N. 1988, ApJ, 330, 474CrossRefGoogle Scholar
Parker, E.N. 1991, ApJ, 376, 355CrossRefGoogle Scholar
Parnell, C.E., & Jupp, P.E. 2000, ApJ, 529, 554CrossRefGoogle Scholar
Pevtsov, A.A. 2002, Sol. Phys., 207, 111CrossRefGoogle Scholar
Piran, T. 2004, Rev. Mod. Phys., 76, 1143CrossRefGoogle Scholar
Poutanen, J., & Fabian, A.C. 1999, MNRAS (Letters), 306, L31CrossRefGoogle Scholar
Priest, E.R., & Forbes, T.G. 2002, A&Ar 10, 313Google Scholar
Remillard, R.A., & McClintock, J.E. 2006, ARA&A, 44, 49Google Scholar
Tang, S.C., & Zhang, S.N. 2007, in preparationGoogle Scholar
Shakura, N.I., & Sunyaev, R.A. 1973, A&A, 24, 337Google Scholar
Shimizu, T., & Tsuneta, S. 1997, ApJ, 486, 1045CrossRefGoogle Scholar
Takeuchi, M., Mineshige, S., & Negoro, H. 1995, PASJ, 47, 617Google Scholar
Tanaka, T., & Washimi, H. 2002, Science, 296, 321CrossRefGoogle Scholar
Terrell, N.J.J. 1972, ApJ (Letters), 174, L35CrossRefGoogle Scholar
Tingay, S.J., Jauncey, D.L., Preston, R.A., et al. 1995, Nature, 374, 141CrossRefGoogle Scholar
Ueda, Y., Akiyama, M., Ohta, K., & Miyaji, T. 2003, ApJ, 598, 886CrossRefGoogle Scholar
Uttley, P. 2004, MNRAS (Letters), 347, L61CrossRefGoogle Scholar
Uttley, P., & McHardy, I.M. 2001, MNRAS (Letters), 323, L26CrossRefGoogle Scholar
Uttley, P., McHardy, I.M., & Vaughan, S. 2005, MNRAS, 359, 345CrossRefGoogle Scholar
Vaughan, S., Fabian, A.C., & Nandra, K. 2003a, MNRAS, 339, 1237CrossRefGoogle Scholar
Vaughan, S., Edelson, R., Warwick, R.S., & Uttley, P. 2003b, MNRAS, 345, 1271CrossRefGoogle Scholar
Vlahos, L., Isliker, H., & Lepreti, F. 2004, ApJ, 608, 504CrossRefGoogle Scholar
Walsh, R.W., & Ireland, J. 2003, A&Ar 12, 1Google Scholar
Wang, J.-M., Watarai, K.-Y., & Mineshige, S. 2004, ApJ (Letters), 607, L107CrossRefGoogle Scholar
Wang, J., Zhang, J., Wang, T., Zhang, C., Liu, Y., Nitta, N., & Slater, G.L. 2001, in: Brekke, P., Fleck, B. & Gurman, J.B. (eds.), Recent Insights into the Physics of the Sun and Heliosphere: Highlights from SOHO and Other Space Missions, Proc. IAU Symp. No. 203 (San Francisco: ASP), p. 331Google Scholar
Wang, X.Y., Dai, Z.G., & Lu, T. 2003, ApJ, 592, 347CrossRefGoogle Scholar
Yamamoto, T.T., Kusano, K., Maeshiro, T., Yokoyama, T., & Sakurai, T. 2005, ApJ, 624, 1072CrossRefGoogle Scholar
Zhang, B. 2007, ChJAA, 7, 1Google Scholar
Zhang, C., Lechner, P., Lutz, G., Porro, M., Richter, R., Treis, J., Struder, L., & Zhang, S.N. 2006, Nucl. Instr. & Meth. A, 568, 207CrossRefGoogle Scholar
Zhang, S.N., Wilson, C.A., Harmon, B.A., et al. 1994, IAUC 6046Google Scholar
Zhang, S.N., Harmon, B.A., Paciesas, W.S., Fishman, G.J., Grindlay, J.E., Barret, D., Tavani, M., Kaaret, P., Bloser, P., Ford, E., & Titarchuk, L. 1996, A&AS, 120C, 279Google Scholar
Zhang, S.N. 1997, in: Wickramasinghe, D.T., Bicknell, G.V. & Ferrario, L. (eds.), Accretion Phenomena and Related Outflows, Proc. IAU Coll. No. 163, ASP-CS, 121, 41Google Scholar
Zhang, S.N., Cui, W., Harmon, B.A., Paciesas, W.S., Remillard, R.E., & van Paradijs, J. 1997, ApJ (Letters), 477, L95CrossRefGoogle Scholar
Zhang, S.N., Cui, W., & Chen, W. 1997, ApJ (Letters), 482, L155Google Scholar
Zhang, S.N., Mirabel, I.F., Harmon, B.A., Kroeger, R.A., Rodriguez, L.F., Hjellming, R.M., & Rupen, M.P. 1997, in: Dermer, C.D., Strickman, M.S. & Kurfess, J.D. (eds.), Proc. Fourth Compton Symposium, AIP-CP, 410, 141Google Scholar
Zhang, S.N., Cui, W., Chen, W., Yao, Y., Zhang, X., Sun, X., Wu, X.-B., & Xu, H. 2000, Science, 287, 1239CrossRefGoogle Scholar
Zhang, S.N. 2005, ApJ (Letters), 618, L79CrossRefGoogle Scholar
Zhang, Y.-Z., Wang, J.-X., Attrill, G., & Harra, L.K. 2006, in: Bothmer, V. & Hady, A.A. (eds.), Solar Activity and its Magnetic Origin, Proc. IAU Symposium No. 233 (Cambridge: CUP), p. 357CrossRefGoogle Scholar