Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T16:03:18.583Z Has data issue: false hasContentIssue false

A simple two-component description of mass segregation for anisotropic globular clusters

Published online by Cambridge University Press:  11 March 2020

S. Torniamenti
Affiliation:
Università degli Studi di Milano, Dipartimento di Fisica, via Celoria 16, 20133Milano, Italy emails: stefano.torniamenti@studenti.unimi.it, giuseppe.bertin@unimi.it
G. Bertin
Affiliation:
Università degli Studi di Milano, Dipartimento di Fisica, via Celoria 16, 20133Milano, Italy emails: stefano.torniamenti@studenti.unimi.it, giuseppe.bertin@unimi.it
P. Bianchini
Affiliation:
Observatoire Astronomique de Strasbourg, 11 Rue de l’Université, 67000Strasbourg, France email: paolo.bianchini@astro.unistra.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As a result of the slow action of two-body encounters, globular clusters develop mass segregation and attain a condition of only partial energy equipartition even in their central, most relaxed regions. Realistic numerical simulations show that, during the process, a radially-biased anisotropy profile slowly builds up, mimicking that resulting from incomplete violent relaxation. Commonly used dynamical models, such as the one-component King models, cannot describe these properties. Here we show that simple two-component models based on a distribution function originally conceived to describe elliptical galaxies, recently truncated and adapted to the context of globular clusters, can describe in detail what is observed in complex and realistic numerical simulations.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bellini, A., Bianchini, P., Varri, A. L., et al. 2017, ApJ, 844, 167CrossRefGoogle Scholar
Bertin, G. & Stiavelli, M. 1993, Reports on Progress in Physics, 56, 493CrossRefGoogle Scholar
Bianchini, P., Sills, A., & Miholics, M. 2017, MNRAS, 471, 1181CrossRefGoogle Scholar
Bianchini, P., van de Ven, G., Norris, M. A., et al. 2016, MNRAS, 458, 3644CrossRefGoogle Scholar
Da Costa, G. S. & Freeman, K. C. 1976, ApJ, 206, 128CrossRefGoogle Scholar
de Vita, R., Bertin, G., & Zocchi, A. 2016, A&A, 590, A16Google Scholar
Di Cecco, A., Zocchi, A., Varri, A. L., et al. 2013, AJ, 145, 103CrossRefGoogle Scholar
Downing, J. M. B., Benacquista, M. J., Giersz, M., & Spurzem, R. 2010, MNRAS, 407, 1946CrossRefGoogle Scholar
King, I. R. 1966, ApJ, 71, 64CrossRefGoogle Scholar
Libralato, M., Bellini, A., van der Marel, R. P., et al. 2018, ApJ, 861, 99CrossRefGoogle Scholar
Tiongco, M. A., Vesperini, E., & Varri, A. L. 2016, MNRAS, 461, 402CrossRefGoogle Scholar
Torniamenti, S., Bertin, G., & Bianchini, P. 2019, paper submittedGoogle Scholar
Trenti, M. & van der Marel, R. 2013, MNRAS, 435, 3272CrossRefGoogle Scholar
van der Marel, R. P., & Anderson, J. 2010, ApJ, 710, 1063CrossRefGoogle Scholar
Watkins, L. L., van der Marel, R. P., Bellini, A., & Anderson, J. 2015, ApJ, 803, 29CrossRefGoogle Scholar
Zocchi, A., Bertin, G., & Varri, A. L. 2012, A&A, 539, A65Google Scholar