No CrossRef data available.
Article contents
Simulations of Colliding Winds in Massive Binary Systems with Accretion
Published online by Cambridge University Press: 30 November 2022
Abstract
We run numerical simulations of massive colliding wind binaries, and quantify the accretion onto the secondary under different conditions. We set 3D simulation of a LBV–WR system and vary the LBV mass loss rate to obtain different values of wind momentum ratio η. We show that the mean accretion rate for stationary systems fits a power law Macc∝ η–1.6 for a wide range of η, until for extremely small η saturation in the accretion is reached. We find that the stronger the primary wind, the smaller the opening angle of the colliding wind structure (CWS), and compare it with previous analytical estimates. We demonstrate the efficiency of clumpy wind in penetrating the CWS and inducing smaller scale clumps that can be accreted. We propose that simulations of colliding winds can reveal more relations as the ones we found, and can be used to constrain stellar parameters.
Keywords
- Type
- Contributed Paper
- Information
- Proceedings of the International Astronomical Union , Volume 16 , Symposium S366: The Origin of Outflows in Evolved Stars , November 2020 , pp. 144 - 158
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union