Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T18:33:05.974Z Has data issue: false hasContentIssue false

Simultaneously constraining the astrophysics of reionisation and the epoch of heating with 21CMMC

Published online by Cambridge University Press:  08 May 2018

Bradley Greig
Affiliation:
Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy email: brad.s.greig@gmail.com
Andrei Mesinger
Affiliation:
Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy email: brad.s.greig@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We extend our MCMC sampler of 3D EoR simulations, 21CMMC, to perform parameter estimation directly on light-cones of the cosmic 21cm signal. This brings theoretical analysis one step closer to matching the expected 21-cm signal from next generation interferometers like HERA and the SKA. Using the light-cone version of 21CMMC, we quantify biases in the recovered astrophysical parameters obtained from the 21cm power spectrum when using the co-eval approximation to fit a mock 3D light-cone observation. While ignoring the light-cone effect does not bias the parameters under most assumptions, it can still underestimate their uncertainties. However, significant biases (∼few – 10 σ) are possible if all of the following conditions are met: (i) foreground removal is very efficient, allowing large physical scales (k ∼ 0.1 Mpc−1) to be used in the analysis; (ii) theoretical modelling is accurate to ∼10 per cent in the power spectrum amplitude; and (iii) the 21cm signal evolves rapidly (i.e. the epochs of reionisation and heating overlap significantly

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Datta, K. K., Mellema, G., Mao, Y., Iliev, I. T., Shapiro, P. R., & Ahn, K., 2012, MNRAS, 424, 1877Google Scholar
Datta, K. K., Jensen, H., Majumdar, S., Mellema, G., Iliev, I. T., Mao, Y., Shapiro, P. R., & Ahn, K., 2014, MNRAS, 442, 1491Google Scholar
DeBoer, D. R., et al. 2017, PASP, 129, 5001Google Scholar
Furlanetto, S. R., Oh, S. P., & Briggs, F. H., 2006, Phys. Rep., 433, 181CrossRefGoogle Scholar
Ghara, R., Datta, K. K., & Choudhury, T. R., 2015, MNRAS, 453, 3143Google Scholar
Greig, B. & Mesinger, A., 2015, MNRAS, 449, 4246CrossRefGoogle Scholar
Greig, B. & Mesinger, A., 2017, MNRAS, 472, 2651Google Scholar
Jensen, H., et al. 2013, MNRAS, 435, 460Google Scholar
La Plante, P., Battaglia, N., Natarajan, A., Peterson, J. B., Trac, H., Cen, R., & Loeb, A., 2014, ApJ, 789, 31Google Scholar
Mellema, G., et al. 2013, Exp. Astron., 36, 235CrossRefGoogle Scholar
Mesinger, A. & Furlanetto, S. R., 2007, ApJ, 669, 663Google Scholar
Mesinger, A., Furlanetto, S. R., & Cen, R., 2011, MNRAS, 431, 955Google Scholar
Mondal, R., Bharadwaj, S. & Datta, K. K. 2017, arXiv:1706.09449Google Scholar
Trott, C. M., 2016, MNRAS, 461, 126Google Scholar