No CrossRef data available.
Article contents
Single and multiple solution algorithms to scan asteroid databases for identifications
Published online by Cambridge University Press: 01 August 2006
Abstract
The process of cataloguing the minor planet population of the Solar System has experienced a great advance in the last decades with the start-up of several surveys. The large volume of data generated by them has increased with time and given rise to huge databases of asteroids with uneven qualities.
In fact, a significant fraction of these objects have not been enough observed, thus leading to the computation of very poor quality orbits as to carry out useful predictions of the positions of such asteroids. As a result, some objects can get lost, which is particularly embarrassing for those with Earth crossing orbits.
When this situation persists for a long time, the aforementioned databases end up contaminated in the sense that they contain more than one discovery for the same physical object and some kind of action must be taken. The algorithms for asteroid identifications are thought precisely to mitigate this problem and their design will depend upon the quality of the available data for the objects to be identified.
In this paper we will distinguish two cases: when both objects have a nominal orbit and when one of them lacks it. In addition, when the available data poorly constrain the solution, other orbits in the neighbourhood of the nominal one are also compatible with the observations. Using these alternative orbits allows us to find many identifications that otherwise would be missed. Finally, we will show the efficiency of all these algorithms when applied to the datasets distributed by the Minor Planet Center.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 2 , Symposium S236: Near Earth Objects, our Celestial Neighbors: Opportunity and Risk , August 2006 , pp. 269 - 280
- Copyright
- Copyright © International Astronomical Union 2007