Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T13:27:53.029Z Has data issue: false hasContentIssue false

A small-scale EUV jet in the quiet Sun region

Published online by Cambridge University Press:  18 July 2013

Junchao Hong
Affiliation:
National Astronomical Observatories/Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, Yunnan 650011, P.R.China Graduate School of Chinese Academy of Sciences, Beijing, P.R. China email: hjcsolar@ynao.ac.cn
Yunchun Jiang
Affiliation:
National Astronomical Observatories/Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, Yunnan 650011, P.R.China
Ruisheng Zheng
Affiliation:
National Astronomical Observatories/Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, Yunnan 650011, P.R.China
Yi Bi
Affiliation:
National Astronomical Observatories/Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, Yunnan 650011, P.R.China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Solar jets are typical proxies of small-scale magnetic reconnection events in the solar atmosphere. In this paper, we observe a small-scale jet in a solar quiet region, using data from SDO/Atmospheric Imaging Assembly (AIA), Helioseismic and Magnetic Imager (HMI), with supplemental data from STEREO/EUVI. From HMI magnetograms and calculated photospheric flows, we find that the jet is related to the interaction between unipolar network fields and emerging internetwork bipoles at the boundary of a supergranular cell. In AIA extreme-ultraviolet images, the jet actually includes two successive plasma ejections along different directions. The first ejection follows a distorted path which guides plasma into a small filament channel nearby. However, the second one shot straight along another direction that is parallel with extrapolated potential magnetic field lines on the local. According to these observations, we advocate that during the jet eruption new emerging magnetic fields are reconnecting at the edge of the supergranular cell with different kinds of ambient fields from low (magnetic canopy) to high (high-reaching loops) to allow the occurrence of successive ejections along different directions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Chae, J., Denker, C., Spirock, T. J., Wang, H., & Goode, P. R. 2000, Solar Phys., 195, 333 Google Scholar
Chen, H.-D., Zhang, J., & Ma, S.-L. 2012, RAA, 12, 573 Google Scholar
Dowdy, J. F. Jr., Rabin, D., & Moore, R. L. 1986, Solar Phys., 105, 35 Google Scholar
Hong, J., Jiang, Y., Zheng, R., et al. 2011, Ap. Lett., 738, L20 Google Scholar
Innes, D. E., Genetelli, A., Attie, R., & Potts, H. E. 2009, A&A, 495, 319 Google Scholar
Jiang, Y. C., Chen, H. D., Li, K. J., Shen, Y. D., & Yang, L. H. 2007, A&A, 469, 331 Google Scholar
Jiang, Y.-C., Bi, Y., Yang, J.-Y., Zheng, R.-S., & Wang, J.-X. 2009, RAA, 9, 603 Google Scholar
Leighton, R. B., Noyes, R. W., & Simon, G. W. 1962, ApJ, 135, 474 Google Scholar
Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, Solar Phys., 275, 17 CrossRefGoogle Scholar
Liu, Y., Kurokawa, H., & Shibata, K. 2005, Ap. Lett., 631, L93 Google Scholar
Martin, S. F. 1988, Solar Phys., 117, 243 CrossRefGoogle Scholar
Moore, R. L., Cirtain, J. W., Sterling, A. C., & Falconer, D. A. 2010, ApJ, 720, 757 Google Scholar
Parnell, C. E. 2002, MNRAS, 335, 389 Google Scholar
Potts, H. E. & Diver, D. A. 2008, Solar Phys., 248, 263 Google Scholar
Schou, J., Borrero, J. M., Norton, A. A., et al. 2010, Solar Phys., 177 Google Scholar
Schrijver, C. J. & De Rosa, M. L. 2003, Solar Phys., 212, 165 CrossRefGoogle Scholar
Schuck, P. W. 2006, ApJ, 646, 1358 CrossRefGoogle Scholar
Shen, Y., Liu, Y., Su, J., & Ibrahim, A. 2011, Ap. Lett., 735, L43 CrossRefGoogle Scholar
Shen, Y., Liu, Y., Su, J., & Deng, Y. 2012, ApJ, 745, 164 CrossRefGoogle Scholar
Shibata, K., Ishido, Y., Acton, L. W., et al. 1992, PASJ, 44, L173 Google Scholar
Solanki, S. K. 1993, Space Sci. Rev., 63, 1 CrossRefGoogle Scholar
Wang, Y.-M. 1999, Ap. Lett., 520, L71 Google Scholar
Woodard, M. F. & Chae, J. 1999, Solar Phys., 184, 239 Google Scholar
Wuelser, J.-P., et al. 2004, Proc. SPIE, 5171, 111 CrossRefGoogle Scholar
Yang, J.-Y., Jiang, Y.-C., Yang, D., et al. 2012, RAA, 12, 300 Google Scholar
Yokoyama, T. & Shibata, K. 1996, PASJ, 48, 353 Google Scholar