Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T23:16:35.702Z Has data issue: false hasContentIssue false

Solar-System Studies with Pulsar Timing Arrays

Published online by Cambridge University Press:  04 June 2018

R. N. Caballero
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany email: caball@mpifr-bonn.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-precision pulsar timing is central to a wide range of astrophysics and fundamental physics applications. When timing an ensemble of millisecond pulsars in different sky positions, known as a pulsar timing array (PTA), one can search for ultra-low-frequency gravitational waves (GWs) through the spatial correlations that spacetime deformations by passing GWs are predicted to induce on the pulses’ times-of-arrival (TOAs). A pulsar-timing model, requires the use of a solar-system ephemeris (SSE) to properly predict the position of the solar-system barycentre, the (quasi-)inertial frame where all TOAs are referred. Here, I discuss how while errors in SSEs can introduce correlations in the TOAs that may interfere with GW searches, one can make use of PTAs to study the solar system. I discuss work done within the context of the European Pulsar Timing Array and the International Pulsar Timing Array collaborations. These include new updates on the masses of planets from PTA data, first limits on masses of the most massive asteroids, and comparisons between SSEs from independent groups. Finally, I discuss a new approach in setting limits on the masses of unknown bodies in the solar system and calculate mass sensitivity curves for PTA data.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Arzoumanian, Z. et al. NANOGrav Collaboration, 2015, ApJ, 813, 65Google Scholar
Champion, D. J., Hobbs, G. B., & Manchester, R. N., et al. 1997, ApJ, 720, L201CrossRefGoogle Scholar
Desvignes, G., Caballero, R. N., & Lentati, L., et al. 2016, MNRAS, 458, 3341CrossRefGoogle Scholar
Foster, R. S., & Backer, D. C., 1990, ApJ, 361, 300CrossRefGoogle Scholar
Hobbs, G., & Coles, W., Manchester, R. N. et al., 2012, MNRAS, 427, 2780CrossRefGoogle Scholar
Lentati, L., Shannon, R. M., & Coles, W. A., 2016, MNRAS, 458, 2161Google Scholar
Loeb, A., & Zaldarriaga, M., 1997, Phys. Rev. D, 71, 103520Google Scholar
Lorimer, D. R. & Kramer, M. 2005, Handbook of Pulsar Astronomy. Cambridge Univ. PressGoogle Scholar
Luzum, B., Capitaine, N., & Fienga, A. et al. 2011, Cel. Mech. & Dynamical Astron., 110, 293Google Scholar
Reardon, D. J., Hobbs, G., & Coles, W., et al. 2016, MNRAS, 455, 1751Google Scholar
Sesana, A., & Vecchio, A., 2010, Phys. Rev. D, 81, 104008Google Scholar
Tiburzi, C., & Hobbs, G., Kerr, 2016, MNRAS, 455, 4339Google Scholar
Verbiest, J. P. W., Lentati, L., & Hobbs, G., et al. 2016, MNRAS, 458, 1267CrossRefGoogle Scholar