Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T17:48:42.809Z Has data issue: false hasContentIssue false

Sources of X-rays from galaxies

Published online by Cambridge University Press:  17 August 2012

Q. Daniel Wang*
Affiliation:
Astronomy Department, University of Massachusetts, USA email: wqd@astro.umass.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Galactic X-ray emission is a manifestation of various high-energy phenomena and processes. The brightest X-ray sources are typically accretion-powered objects: active galactic nuclei and low- or high-mass X-ray binaries. Such objects with X-ray luminosities of ≳ 1037 ergs s−1 can now be detected individually in nearby galaxies. The contributions from fainter discrete sources (including cataclysmic variables, active binaries, young stellar objects, and supernova remnants) are well correlated with the star formation rate or stellar mass of galaxies. The study of discrete X-ray sources is essential to our understanding of stellar evolution, dynamics, and end-products as well as accretion physics. With the subtraction of the discrete source contributions, one can further map out truly diffuse X-ray emission, which can be used to trace the feedback from active galactic nuclei, as well as from stars, both young and old, in the form of stellar winds and supernovae. The X-ray emission efficiency, however, is only about 1% of the energy input rate of the stellar feedback alone. The bulk of the feedback energy is most likely gone with outflows into large-scale galactic halos. Much is yet to be investigated to comprehend the role of such outflows in regulating the ecosystem, hence the evolution of galaxies. Even the mechanism of the diffuse X-ray emission remains quite uncertain. A substantial fraction of the emission cannot arise directly from optically-thin thermal plasma, as commonly assumed, and most likely originates in its charge exchange with neutral gas. These uncertainties underscore our poor understanding of the feedback and its interplay with the galaxy evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Anderson, M. E. & Bregman, J. N. 2011, ApJ, 737, 22CrossRefGoogle Scholar
Bekki, K. & Couch, W. J. 2003, ApJ, 596, 13CrossRefGoogle Scholar
Bell, E. F. & De Jong, R. S. 2001, ApJ, 550, 212CrossRefGoogle Scholar
Bogdán, A. & Gilfanov, M. 2011, MNRAS, in pressGoogle Scholar
Crain, R. A., et al. 2010, MNRAS, 407, 1403CrossRefGoogle Scholar
Davis, D. S., Richer, H. B., Anderson, J., et al. 2008, AJ, 135, 2155CrossRefGoogle Scholar
Dijkstra, M. et al. 2011, MNRAS, submitted (arXiv1108.4420)Google Scholar
Doane, N. E., et al. 2004, AJ, 128, 2712CrossRefGoogle Scholar
Gilfanov, M. 2004, MNRAS, 349, 146CrossRefGoogle Scholar
Grimes, J. P., et al. 2009, ApJS, 181, 272CrossRefGoogle Scholar
Grimm, H.-J., Gilfanov, M., & Sunyaev, R. 2003, MNRAS, 339, 793CrossRefGoogle Scholar
Guainazzi, M. & Bianchi, B. 2007, MNRAS, 374, 1290CrossRefGoogle Scholar
Hart, Q. N., Stocke, J. T., & Hallman, E. J. 2009, ApJ, 705, 854CrossRefGoogle Scholar
Irwin, J. A., Athey, A. E., & Bregman, J. N. 2003, ApJ, 587, 356CrossRefGoogle Scholar
Kim, D.-W. & Fabbiano, G. 2004, ApJ, 611, 846CrossRefGoogle Scholar
Kim, D.-W. & Fabbiano, G. 2010, ApJ, 721, 1523CrossRefGoogle Scholar
Kuntz, K. D. & Snowden, S. L. 2010, ApJS, 188, 46CrossRefGoogle Scholar
LaMassa, S. M. 2009, ApJ, 705, 568CrossRefGoogle Scholar
Li, Z. & Wang, Q. D. 2007, ApJL, 668, 39CrossRefGoogle Scholar
Li, Z., Wang, Q. D., & Wakker, B. P. 2009, MNRAS, 397, 148CrossRefGoogle Scholar
Li, Z., et al. 2011, ApJL, 728, 10CrossRefGoogle Scholar
Li, J. & Wang, Q. D. 2011, MNRAS, submittedGoogle Scholar
Liu, J., Wang, Q. D., Li, Z., & Peterson, J. R. 2010, MNRAS, 404, 1879Google Scholar
Liu, J., Mao, S., & Wang, Q. D. 2011a, MNRAS, 415, 64CrossRefGoogle Scholar
Liu, J., Wang, Q. D., & Mao, S. 2011b, MNRAS, in press (arXiv:1111.5915)Google Scholar
Lu, Z. & Wang, Q. D. 2011, MNRAS, 413, 347CrossRefGoogle Scholar
Mineo, S., Gilfanov, M., & Sunyaev, R. 2011, MNRAS, in press (arXiv:1105.4610v2)Google Scholar
Mulchaey, J. S. & Jeltema, T. E. 2010, ApJL, 715, 1CrossRefGoogle Scholar
Omma, H., Binney, J., Bryan, G., & Slyz, A. 2004, MNRAS, 348, 1105CrossRefGoogle Scholar
Oppenheimer, B. D. 2010, MNRAS, 406, 2325CrossRefGoogle Scholar
Owen, F., et al. 2006, AJ, 131, 1974CrossRefGoogle Scholar
Owen, R. A. & Warwick, R. S. 2009, MNRAS, 394, 174CrossRefGoogle Scholar
Pellegrini, S., 2011, ApJ, 738, 57CrossRefGoogle Scholar
Pellegrini, S., Ciotti, L., & Ostriker, J. P. 2011, ApJ, submitted (arXiv1107.3675)Google Scholar
Persic, M. & Rephaeli, Y. 2007, A&A, 463, 481Google Scholar
Porquet, D., Dubau, J., & Grosso, N. 2010, SSRv, 157, 103Google Scholar
Ranalli, P., et al. 2008, MNRAS, 386, 1464CrossRefGoogle Scholar
Revnivtsev, M. et al. 2008, A&A, 490, 37Google Scholar
Revnivtsev, M., et al. 2011, A&A, 526, 94Google Scholar
Sazonov, S., et al. 2006, A&A, 450, 117Google Scholar
Strickland, D. & Heckman, T. 2009, ApJ, 697, 2030CrossRefGoogle Scholar
Sun, M., et al. 2007, ApJ, 657, 197CrossRefGoogle Scholar
Sun, M., et al. 2010, ApJ, 708, 946CrossRefGoogle Scholar
Swartz, D. A., et al. 2011, ApJ, 741, 49CrossRefGoogle Scholar
Tang, S., et al. 2009, MNRAS, 392, 77CrossRefGoogle Scholar
Tang, S. & Wang, Q. D. 2010, MNRAS, 408, 1011CrossRefGoogle Scholar
Townsley, L. K., et al. 2011, ApJS, 194, 16CrossRefGoogle Scholar
Tüllmann, R., et al. 2006, A&A, 457, 779Google Scholar
Tyler, K., et al. 2003, ApJ, 610, 213CrossRefGoogle Scholar
Voss, R., et al. 2009, ApJ, 701, 474CrossRefGoogle Scholar
Wang, J., et al. 2010, ApJ, 719, 208CrossRefGoogle Scholar
Wang, Q. D. 1999, ApJL, 510, 139CrossRefGoogle Scholar
Wang, Q. D., et al. 2001, ApJ, 555, 99CrossRefGoogle Scholar
Wang, Q. D., Chaves, T., & Irwin, J. A. 2003, ApJ, 598, 969CrossRefGoogle Scholar
Wang, Q. D., Owen, F., & Ledlow, M. 2004, ApJ, 611, 821CrossRefGoogle Scholar
Wang, Q. D. 2010, PNAS, 107, 7168CrossRefGoogle Scholar
Weźgowiec, M., et al. 2011, A&A, 531, 44Google Scholar
White, N. E., Swank, J. H., & Holt, S. S. 1983, ApJ, 270, 711CrossRefGoogle Scholar
Xu, X., Wang, Q. D., & Li, X.-D. 2011, in preparationGoogle Scholar
Young, J. S. & Scoville, N. Z. 1991, ARA&A, 29, 581Google Scholar
Yuan, F., Xie, F., & Ostriker, J. P. 2009, ApJ, 691, 98CrossRefGoogle Scholar
Yuan, F. 2007, ASPC, 373, 95Google Scholar
Zhang, Z., et al. 2011, A&A, 533, 33Google Scholar