Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T07:54:34.605Z Has data issue: false hasContentIssue false

The spatial distribution of stars in open clusters

Published online by Cambridge University Press:  18 January 2010

Néstor Sánchez
Affiliation:
Instituto de Astrofísica de Adalucía–CSIC, Apdo. 3004, E-18080, Granada, Spain email: nestor@iaa.es, emilio@iaa.es
Emilio J. Alfaro
Affiliation:
Instituto de Astrofísica de Adalucía–CSIC, Apdo. 3004, E-18080, Granada, Spain email: nestor@iaa.es, emilio@iaa.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the internal spatial structure of 16 open clusters in the Milky Way spanning a wide range of ages. For this, we use the minimum-spanning-tree method (the Q parameter, which enables one to classify the stellar distribution as either radially or fractally clustered), King-profile fitting, and the correlation dimension (Dc) for those clusters with fractal patterns. On average, clusters with fractal-like structure are younger than those exhibiting radial stellar-density profiles. There is a significant correlation between Q and the cluster age measured in crossing-time units. For fractal clusters, there is a significant correlation between fractal dimension and age. These results support the idea that stars in newly born clusters likely follow the fractal patterns of their parent molecular clouds, and eventually evolve towards more centrally concentrated structures. However, stellar clusters as old as ~ 100 Myr can exist that have not totally destroyed their fractal structure. Finally, we have found the intriguing result that the lowest fractal dimensions obtained for the open clusters seem to be considerably smaller than the average value measured in Galactic molecular cloud complexes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Caballero, J. A. 2008, MNRAS, 383, 375CrossRefGoogle Scholar
Cabrera–Caño, J. & Alfaro, E. J. 1990, A&A, 235, 94Google Scholar
Cartwright, A. & Whitworth, A. P. 2004, MNRAS, 348, 589CrossRefGoogle Scholar
Chappell, D. & Scalo, J. 2001, ApJ, 551, 712CrossRefGoogle Scholar
Elmegreen, B. G. & Scalo, J. 2004, ARA&A, 42, 211Google Scholar
Federrath, C., Klessen, R. S., & Schmidt, W. 2009, ApJ, 692, 364CrossRefGoogle Scholar
Goodwin, S. P. & Whitworth, A. P. 2004, A&A, 413, 929Google Scholar
King, I. 1962, AJ, 67, 471CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A. 2003, ARA&A, 41, 57Google Scholar
Ochsenbein, F., Bauer, P., & Marcout, J. 2000, A&AS, 143, 221Google Scholar
Sánchez, N., Alfaro, E. J., & Pérez, E. 2005, ApJ, 625, 849CrossRefGoogle Scholar
Sánchez, N., Alfaro, E. J., Elias, F., Delgado, A. J., & Cabrera–Caño, J. 2007a, ApJ, 667, 213CrossRefGoogle Scholar
Sánchez, N., Alfaro, E. J., & Pérez, E. 2007b, ApJ, 656, 222CrossRefGoogle Scholar
Sánchez, N. & Alfaro, E. J. 2008, ApJS, 178, 1CrossRefGoogle Scholar
Sánchez, N. & Alfaro, E. J. 2009, ApJ, 696, 2086CrossRefGoogle Scholar
Schmeja, S. & Klessen, R. S. 2006, A&A, 449, 151Google Scholar
Schmeja, S., Kumar, M. S. N., & Ferreira, B. 2008, MNRAS, 389, 1209CrossRefGoogle Scholar
Schmeja, S., Gouliermis, D. A., & Klessen, R. S. 2009, ApJ, 694, 367CrossRefGoogle Scholar