Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T22:55:02.326Z Has data issue: false hasContentIssue false

Spin-orbit alignment of exoplanet systems: how can Asteroseismology help us?

Published online by Cambridge University Press:  27 October 2016

Tiago L. Campante*
Affiliation:
School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK email: campante@bison.ph.bham.ac.uk Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Measuring the obliquities of exoplanet-host stars provides invaluable diagnostic information for theories of planetary formation and migration. Most of these results have so far been obtained by measuring the Rossiter--McLaughlin effect, clearly favoring systems that harbor hot Jupiters. While it would be extremely helpful to extend these measurements to long-period and multiple-planet systems, it is also true that the latter systems tend to involve smaller planets, making it ever so difficult to apply such techniques. Asteroseismology provides a powerful method of determining the inclination of the stellar spin axis from an analysis of the rotationally-induced splittings of the oscillation modes. This provides an estimate of the obliquity independently of other methods. The applicability of the asteroseismic method is determined by the stellar properties and not by the signal-to-noise ratio of the transit data. Here we present a recap of the spin-orbit geometry, explain how the asteroseismic method works, and review previous applications of the method to exoplanet-host stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Albrecht, S., Winn, J. N., Johnson, J. A., et al. 2012, ApJ, 757, 18 Google Scholar
Ballot, J., García, R. A., & Lambert, P. 2006, MNRAS, 369, 1281 Google Scholar
Ballot, J., Appourchaux, T., Toutain, T., & Guittet, M. 2008, A&A, 486, 867 Google Scholar
Ballot, J. 2010, Astronomische Nachrichten, 331, 933 CrossRefGoogle Scholar
Benomar, O., Masuda, K., Shibahashi, H., & Suto, Y. 2014, PASJ, 66, 94 Google Scholar
Chaplin, W. J., Sanchis-Ojeda, R., Campante, T. L., et al. 2013, ApJ, 766, 101 Google Scholar
Davies, G. R., Chaplin, W. J., Farr, W. M., et al. 2015, MNRAS, 446, 2959 CrossRefGoogle Scholar
Fabrycky, D. C. & Winn, J. N. 2009, ApJ, 696, 1230 Google Scholar
Gizon, L. & Solanki, S. K. 2003, ApJ, 589, 1009 CrossRefGoogle Scholar
Gizon, L., Ballot, J., Michel, E., et al. 2013, Proc. of the National Academy of Science, 110, 13267 CrossRefGoogle Scholar
Handberg, R. & Campante, T. L. 2011, A&A, 527, A56 Google Scholar
Huber, D., Carter, J. A., Barbieri, M., et al. 2013, Science, 342, 331 CrossRefGoogle Scholar
Ledoux, P. 1951, ApJ, 114, 373 Google Scholar
Lund, M. N., Lundkvist, M., Silva Aguirre, V., et al. 2014, A&A, 570, A54 Google Scholar
Morton, T. D. & Winn, J. N. 2014, ApJ, 796, 47 CrossRefGoogle Scholar
Quinn, S. N., White, T. R., Latham, D. W., et al. 2015, ApJ, 803, 49 Google Scholar
van Eylen, V., Lund, M. N., Silva Aguirre, V., et al. 2014, ApJ, 782, 14 Google Scholar
Wright, D. J., Chené, A.-N., De Cat, P., et al. 2011, ApJ (Letters), 728, L20 Google Scholar