No CrossRef data available.
Published online by Cambridge University Press: 01 August 2006
Bright-rimmed clouds (BRCs) are logical laboratories in which to study triggered star formation, however it is difficult in any single cloud to definitively show that star formation was triggered. In this study we compare the hydrodynamic models produced by Vanhala & Cameron (1998) that treat the problems of star-formation triggered by wind-driven implosion to millimeter and submillimeter molecular line observations of BRCs with embedded IRAS sources. These latter sources are derived from a catalog by Sugitani, Fukui, & Ogura (1991) In order to make an accurate comparison we implement a radiative transfer model based on the Sobolev or LVG approximation, and generate molecular line maps which can be directly compared to our observations. We observed several millimeter and submillimeter transitions of CO, C 18O, HCO+, and H13CO+ using the FCRAO, SMT, CSO, and SMA observatories (De Vries, Narayanan, & Snell 2002). We compare these observations with 3 hydrodynamic models of wind-driven shock fronts interacting with pre-existing, but unbound cloud cores. In two cases these model cores are triggered to collapse under the influence of the external wind.