Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T10:56:51.076Z Has data issue: false hasContentIssue false

Star-formation in nuclear clusters and the origin of the Galactic center apparent core distribution

Published online by Cambridge University Press:  07 March 2016

Danor Aharon
Affiliation:
Physics Department, Technion – Israel Institute of Technology, Haifa 3200003, Israel email: danor@tx.technion.ac.il
Hagai B. Perets
Affiliation:
Physics Department, Technion – Israel Institute of Technology, Haifa 3200003, Israel email: danor@tx.technion.ac.il
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nuclear stellar clusters (NSCs) are known to exist around massive black holes (MBHs) in galactic nuclei. Two formation scenarios were suggested for their origin: build-up of NSCs and Continuous in-situ star-formation. Here we study the effects of star formation on the build-up of NSCs and its implications for their long term evolution and their resulting structure. We show that continuous star-formation can lead to the build-up of an NSC with properties similar to those of the Milky-way NSC. We also find that the general structure of the old stellar population in the NSC with in-situ star-formation could be very similar to the steady-state Bahcall-Wolf cuspy structure. However, its younger stellar population does not yet achieve a steady state. In particular, formed/evolved NSCs with in-situ star-formation contain differential age-segregated stellar populations which are not yet fully mixed. Younger stellar populations formed in the outer regions of the NSC have a cuspy structure towards the NSC outskirts, while showing a core-like distribution inwards; with younger populations having larger core sizes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aharon, D. & Perets, H.B. 2014 ArXiv e-prints, 1409.5121Google Scholar
Antonini, F. 2013, ApJ, 763, 62CrossRefGoogle Scholar
Bahcall, J. N. & Wolf, R. A. 1976, ApJ 209 214232Google Scholar
Bahcall, J. N. & Wolf, R. A. 1977, ApJ 216 883907Google Scholar
Do, T., Ghez, A. M., Morris, M. R., Lu, J. R., Matthews, K., Yelda, S., & Larkin, J. 2009, ApJ 703 13231337Google Scholar
Do, T., Martinez, G. D., Yelda, S., Ghez, A., Bullock, J., Kaplinghat, M., Lu, J. R., Peter, A. H. G., & Phifer, K. 2013, ApJL, 779, L6CrossRefGoogle Scholar
Figer, D. F., Rich, R. M., Kim, S. S., Morris, M., & Serabyn, E. 2004, ApJ 601 319339CrossRefGoogle Scholar
Genzel, R., Eisenhauer, F., & Gillessen, S. 2010, Reviews of Modern Physics 82 31213195Google Scholar
Lightman, A.P. & Shapiro, S.L. 1977 ApJ 211 244262Google Scholar
Loose, H. H., Kruegel, E., & Tutukov, A. 1982, AAP 105 342350Google Scholar
McLaughlin, D. E., King, A. R., & Nayakshin, S. 2006, ApJL 650 L37L40CrossRefGoogle Scholar
Merritt, D., 2010, ApJ 718 739761CrossRefGoogle Scholar
Perets, H. B., Hopman, C., & Alexander, T. 2007, ApJ 656 709720Google Scholar
Pfuhl, O., Fritz, T. K., Zilka, M., Maness, H., Eisenhauer, F., Genzel, R., Gillessen, S., Ott, T., Dodds-Eden, K., & Sternberg, A. 2011, ApJ, 741, 108CrossRefGoogle Scholar
Seth, A. C., Dalcanton, J. J., Hodge, P. W., & Debattista, V. P. 2006, AJ 132 25392555CrossRefGoogle Scholar
Tremaine, S.D., Ostriker, J.P., & Spitzer, L. Jr. 1975 ApJ 196 407411Google Scholar
Walcher, C. J., Van der Marel, R. P., McLaughlin, D., Rix, H. W., Böker, T., Häring, N., Ho, L. C., Sarzi, M., & Shields, J. C. 2005, ApJ 618 237246CrossRefGoogle Scholar
Young, P. J. 1977, ApJ 215 3652Google Scholar