Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T18:43:44.893Z Has data issue: false hasContentIssue false

Status of Foreground and Instrument Challenges for 21cm EoR experiments – Design Strategies for SKA and HERA

Published online by Cambridge University Press:  08 May 2018

Nithyanandan Thyagarajan*
Affiliation:
National Radio Astronomy Observatory, 1003 Lopezville Rd, Socorro, NM 87801, USA email: t_nithyanandan@nrao.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Direct detection of the Epoch of Reionization (EoR) via redshifted 21 cm line of H i will reveal the nature of the first stars and galaxies as well as revolutionize our understanding of a poorly explored evolutionary phase of the Universe. Projects such as the MWA, LOFAR, and PAPER commenced in the last decade with the promise of high significance statistical detection of the EoR, but have so far only weakly constrained models owing to unforeseen challenges from bright foreground sources and instrument systematics. It is essential for next generation instruments like the HERA and SKA to have these challenges addressed. I present an analysis of these challenges – wide-field measurements, antenna beam chromaticity, reflections in the instrument, and antenna position errors – along with performance specifications and design solutions that will be critical to designing successful next-generation instruments in enabling the first detection and also in placing meaningful constraints on reionization models.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Ali, Z. S., Parsons, A. R., Zheng, H., et al. 2015, ApJ, 809, 61CrossRefGoogle Scholar
Beardsley, A. P., Hazelton, B. J., Morales, M. F., et al. 2013, MNRAS, 429, L5Google Scholar
DeBoer, D. R., et al. 2017, PASP, 129, 045001Google Scholar
Ewall-Wice, A., Bradley, R., DeBoer, D., et al. 2016, ApJ, 831, 196Google Scholar
Lidz, A., Zahn, O., McQuinn, M., Zaldarriaga, M., & Hernquist, L., 2008, ApJ, 680, 962Google Scholar
Mesinger, A., Furlanetto, S., & Cen, R., 2011, MNRAS, 411, 955Google Scholar
Parsons, A. R. & Backer, D. C., 2009, AJ, 138, 219Google Scholar
Parsons, A. R., Pober, J. C., Aguirre, J. E., et al. 2012b, ApJ, 756, 165Google Scholar
Patra, N., Parsons, A. R., DeBoer, D. R., et al. 2017, arXiv e-prints, arXiv:1701.03209Google Scholar
Thyagarajan, N., Udaya Shankar, N., Subrahmanyan, R., et al. 2013, ApJ, 776, 6Google Scholar
Thyagarajan, N., Jacobs, D. C., Bowman, J. D., et al. 2015a, ApJ, 804, 14Google Scholar
Thyagarajan, N., Jacobs, D. C., Bowman, J. D., et al. 2015b, ApJL, 807, L28Google Scholar
Thyagarajan, N., Parsons, A. R., DeBoer, D. R., et al. 2016, ApJ, 825, 9Google Scholar
Zheng, H., Tegmark, M., Buza, V., et al. 2014, MNRAS, 445, 1084Google Scholar