Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T05:06:36.513Z Has data issue: false hasContentIssue false

Stellar and dust SED modelling of the Whirlpool interacting galaxy system

Published online by Cambridge University Press:  17 August 2012

Erin Mentuch
Affiliation:
Dept. of Physics & Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada email: mentuch@physics.mcmaster.ca
Christine Wilson
Affiliation:
Dept. of Physics & Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada email: mentuch@physics.mcmaster.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some 300-500 Myr ago, the Whirlpool galaxy (NGC 5194/M51a) and its nearby post-starburst galaxy neighbour, NGC 5195/M51b closely interacted, resulting in significant changes to their star formation activity. Both galaxies display colors indicative of enhanced star formation during closest passage, but since then, star formation has ceased in NGC 5195 yet remained ongoing in the spiral NGC 5194. With a wealth of multi-wavelength (0.2–500 μm for this study) observations available, this nearby (10 Mpc) system, whose star formation history is well constrained through optical colors of individual stars and its dynamical history, provides the optimal laboratory to test the relation between dust emission and stellar emission within the fundamental framework of today's stellar population synthesis and dust emission models.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Aniano, G., Draine, B. T., Gordon, K. D., & Sandstrom, K. 2011, PASP, 123, 1218CrossRefGoogle Scholar
Compiègne, M., Verstraete, L., Jones, A., et al. 2011, A&A, 525, A103.Google Scholar
Dale, D. A. & Helou, G. 2002, ApJ, 576, 159CrossRefGoogle Scholar
Désert, F.-X., Boulanger, F., & Puget, J. L. 1990, A&A, 237, 215Google Scholar
Dobbs, C. L., Theis, C., Pringle, J. E., & Bate, M. R. 2010, MNRAS, 403, 625CrossRefGoogle Scholar
Draine, B. T. & Li, A. 2007, ApJ, 657, 810CrossRefGoogle Scholar
Feldmeier, J. J., Ciardullo, R., & Jacoby, G. H. 1997, ApJ, 479, 231CrossRefGoogle Scholar
Fioc, M. & Rocca-Volmerange, B. 1997, A&A, 326, 950Google Scholar
Helfer, T. T., Thornley, M. D., Regan, M. W., et al. 2003, ApJS, 145, 259CrossRefGoogle Scholar
Jarrett, T. H., Chester, T., Cutri, R., Schneider, S. E., & Huchra, J. P. 2003, AJ, 125, 525CrossRefGoogle Scholar
Kennicutt, R. C. Jr., Armus, L., Bendo, G., et al. 2003, PASP, 115, 928CrossRefGoogle Scholar
Koda, J., Sawada, T., Wright, M. C. H., et al. 2011, ApJS, 193, 19CrossRefGoogle Scholar
Kohno, K., Tosaki, T., Matsushita, S., et al. 2002, PASJ, 54, 541CrossRefGoogle Scholar
Lee, J. H., Hwang, N., & Lee, M. G. 2011, ApJ, 735, 75CrossRefGoogle Scholar
Pei, Y. C. 1992, ApJ, 395, 130CrossRefGoogle Scholar
Salo, H. & Laurikainen, E. 2000, MNRAS, 319, 377Google Scholar
Thronson, H. A., Jr., Rubin, H., & Ksir, A. 1991, MNRAS, 252, 550CrossRefGoogle Scholar
Tikhonov, N. A., Galazutdinova, O. A., & Tikhonov, E. N. 2009, Astron. Lett., 35, 599CrossRefGoogle Scholar