Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T18:26:54.021Z Has data issue: false hasContentIssue false

Stellar and gas mass distributions for understanding the nature of spiral arms

Published online by Cambridge University Press:  10 June 2020

Fumi Egusa
Affiliation:
Institute of Astronomy, University of Tokyo, Mitaka, Tokyo181-0015, Japan email: fegusa@ioa.s.u-tokyo.ac.jp
Erin Mentuch Cooper
Affiliation:
University of Texas at Austin, Austin, Texas78712-1205, USA
Jin Koda
Affiliation:
State University of New York Stony Brook, Stony Brook, New York11794-3800, USA
Junichi Baba
Affiliation:
National Astronomical Observatory of Japan, Mitaka, Tokyo181-8588, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Numerical simulations of disk galaxies with steady (long-lived) and dynamic (short-lived) spiral arms suggest that offsets between stellar and gas spiral arms depend on their nature or lifetime (Baba et al.2015). Based on this theoretical study, we investigated gas-star offsets in the nearby grand-design spiral galaxy M51, and found that its two spiral arms exhibit different offset dependences against radius. One arm is consistent with a steady arm, while the other is consistent with a dynamic arm. We deduce that this difference is likely due to a tidal interaction with the companion galaxy (Egusa et al.2017). For this study, a stellar mass distribution with a high accuracy at a high spatial resolution is essential, which has come to be available by applying recent SED fitting techniques to multi-wavelength images. We are now working to extend this study to other nearby spiral galaxies.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Baba, J. 2015, MNRAS 454, 295410.1093/mnras/stv2220CrossRefGoogle Scholar
Baba, J., Morokuma-Matsui, K., & Egusa, F. 2015, PASJ 67, L410.1093/pasj/psv048CrossRefGoogle Scholar
Boquien, M., Burgarella, D., Roehlly, Y., Buat, V., Ciesla, L., et al. 2019, A&A 622, A103Google Scholar
Delgado-Serrano, R., Hammer, F., Yang, Y. B., Puech, M., et al. 2010, A&A 509, A78Google Scholar
Dobbs, C. & Baba, J. 2014, PASA 31, 3510.1017/pasa.2014.31CrossRefGoogle Scholar
Egusa, F., Mentuch Cooper, E., Koda, J., & Baba, J. 2017, MNRAS 465, 46010.1093/mnras/stw2710CrossRefGoogle Scholar
Fujii, M. S., Baba, J., Saitoh, T. R., Makino, J., Kokubo, E., et al. 2011, ApJ 730, 10910.1088/0004-637X/730/2/109CrossRefGoogle Scholar
Fujimoto, M. 1968, in Non-stable Phenomena in Galaxies, Vol. 29 of IAU Symposium, p. 453Google Scholar
Koda, J., Scoville, N., Sawada, T., La Vigne, M. A., Vogel, S. N., et al. 2009, ApJL 700, L13210.1088/0004-637X/700/2/L132CrossRefGoogle Scholar
Lin, C. C. & Shu, F. H. 1964, ApJ 140, 64610.1086/147955CrossRefGoogle Scholar
Mentuch Cooper, E., Wilson, C. D., Foyle, K., Bendo, G., Koda, J., et al. 2012, ApJ 755, 16510.1088/0004-637X/755/2/165CrossRefGoogle Scholar
Pettitt, A. R., Egusa, F., Dobbs, C. L., Tasker, E. J., et al. 2018, MNRAS 480, 335610.1093/mnras/sty2040CrossRefGoogle Scholar
Pettitt, A. R., Tasker, E. J., & Wadsley, J. W. 2016, MNRAS 458, 399010.1093/mnras/stw588CrossRefGoogle Scholar
Roberts, W. W. 1969, ApJ 158, 12310.1086/150177CrossRefGoogle Scholar
Walter, F., Brinks, E., de Blok, W. J. G., Bigiel, F., et al. 2008, AJ 136, 256310.1088/0004-6256/136/6/2563CrossRefGoogle Scholar