Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T09:41:03.396Z Has data issue: false hasContentIssue false

Stellar feedback and triggered star formation

Published online by Cambridge University Press:  18 January 2010

Jan Palouš
Affiliation:
Astronomical Institute, Academy of Sciences of the Czech Republic, Boční 1401, CZ-14061, Prague 4, Czech Republic email: palous@ig.cas.cz
Richard Wünsch
Affiliation:
Astronomical Institute, Academy of Sciences of the Czech Republic, Boční 1401, CZ-14061, Prague 4, Czech Republic email: palous@ig.cas.cz
James E. Dale
Affiliation:
Astronomical Institute, Academy of Sciences of the Czech Republic, Boční 1401, CZ-14061, Prague 4, Czech Republic email: palous@ig.cas.cz
Vojtěch Sidorin
Affiliation:
Astronomical Institute, Academy of Sciences of the Czech Republic, Boční 1401, CZ-14061, Prague 4, Czech Republic email: palous@ig.cas.cz
Anthony Whitworth
Affiliation:
School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, UK email: Anthony.Whitworth@astro.cf.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Young, massive stars influence their ambient medium through winds and radiation. The outcome of this feedback depends on the number of massive stars in a star cluster and on the density of the ambient medium. This contribution is based on a comparison of observations to the results of numerical simulations. We discuss the gravitational fragmentation of feedback-driven shells expanding from young stellar clusters. The thin-shell approximation is compared to 3D hydrodynamical simulations with smoothed-particle hydrodynamics and adaptive-mesh refinement codes. We explore the influence of external pressure and propose a thick-shell dispersion relation, where the pressure of the external medium is included. The mass spectrum of the shell fragments is constructed and we speculate about the origin of the deficit of low-mass objects.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Churchwell, E., et al. 2006, ApJ, 649, 759CrossRefGoogle Scholar
Dale, J. E., Wünsch, R., Whitworth, A., & Palouš, J. 2009, MNRAS, 398, 1537CrossRefGoogle Scholar
Deharveng, L., Zavagno, A., Lefloch, B., Caplan, J., & Pomarès, 2007, Proc. IAU Symp. No. 237, p. 212CrossRefGoogle Scholar
Ehlerová, S & Palouš, J. 2005, A&A, 437, 101Google Scholar
Elmegreen, B. G. 1994, ApJ, 427, 384CrossRefGoogle Scholar
McClure–Griffiths, N. M., Dickey, J. M., Gaensler, B. M., & Green, A. J. 2002, ApJ, 578, 176CrossRefGoogle Scholar
Palouš, J. 2007, Proc. IAU Symp. No. 237, p. 114CrossRefGoogle Scholar
Sidorin, V. 2008, IR, optical and X-ray counterparts of Hi shells in the Milky Way, MSc Thesis, Charles University, PragueGoogle Scholar
Smith, R., Clark, P., & Bonnell, I. 2008, MNRAS, 391, 1091CrossRefGoogle Scholar
Vishniac, E. T. 1983, ApJ, 274, 152CrossRefGoogle Scholar
Walter, F., Brinks, E., de Blok, W. J. G., Bigiel, F., Kennicutt, R. C. Jr., Thornley, M. D., & Leroy, A. 2008, AJ, 136, 2563CrossRefGoogle Scholar
Whitworth, A. P., Bhattal, A. S., Chapman, S. J., Disney, M. J., & Turner, J. A. 1994, MNRAS, 268, 291CrossRefGoogle Scholar
Wünsch, R. & Palouš, , 2001, A&A, 374, 746Google Scholar