Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T05:44:24.108Z Has data issue: false hasContentIssue false

Stellar Magnetism in the Era of Space-Based Precision Photometry

Published online by Cambridge University Press:  07 August 2014

Lucianne M. Walkowicz*
Affiliation:
Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton NJ 08544 email: lucianne@astro.princeton.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The advent of precision space-based photometric missions such as MOST, CoRoT and Kepler has revealed stellar magnetic activity in unprecedented detail. These observations enable new investigations into the fundamental nature of stellar magnetism by furthering our understanding of the stellar rotation and differential rotation that generate the field, and the photometric variability caused by the surface manifestations of the field. In the case of stars with planetary candidates, these data also offer synergy between studies of stars and planets. Here, I review the possibilities and challenges for deepening our understanding of magnetism in solar-like stars in the era of space-based precision photometry.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Auvergne, M., Bodin, P., Boisnard, L., et al. 2009, AAP, 506, 411CrossRefGoogle Scholar
Barnes, S. A. 2007, ApJ, 669, 1167Google Scholar
Basri, G., Walkowicz, L. M., Batalha, N., et al. 2010, ApJL, 713, L155CrossRefGoogle Scholar
Berdyugina, S.Living Rev. Solar Phys. 2 (2005), 8CrossRefGoogle Scholar
Borucki, W. J., Scargle, J. D., & Hudson, H. S. 1985, ApJ, 291, 852Google Scholar
Duncan, D. K., Vaughan, A. H., Wilson, O. C., et al. 1991, ApJS, 76, 383CrossRefGoogle Scholar
Epstein, C. R. & Pinsonneault, M. H. 2012, arXiv:1203.1618Google Scholar
Fröhlich, H.-E., Küker, M., Hatzes, A. P., & Strassmeier, K. G. 2009, AAP, 506, 263Google Scholar
Garcia, R. A., Ballot, J., Mathur, S., Salabert, D., & Regulo, C. 2010, arXiv:1012.0494Google Scholar
Kinemuchi, K., Barclay, T., Fanelli, M., et al. 2012, PASP, 124, 963CrossRefGoogle Scholar
Koch, D. G., Borucki, W. J., Basri, G., et al. 2010, ApJL, 713, L79CrossRefGoogle Scholar
Mamajek, E. E. & Hillenbrand, L. A. 2008, ApJ, 687, 1264CrossRefGoogle Scholar
McQuillan, A., Aigrain, S., & Mazeh, T. 2013, MNRAS, 432, 1203CrossRefGoogle Scholar
Meibom, S., Barnes, S. A., Latham, D. W., et al. 2011, ApJL, 733, L9Google Scholar
Nutzman, P. A., Fabrycky, D. C., & Fortney, J. J. 2011, ApJL, 740, L10Google Scholar
Reiners, A.Living Rev. Solar Phys. 9 (2012), 1CrossRefGoogle Scholar
Reinhold, T. & Reiners, A. 2013, AAP, 557, A11Google Scholar
Sanchis-Ojeda, R. & Winn, J. N. 2011, apj, 743, 61CrossRefGoogle Scholar
Scargle, J. D. 1982, ApJ, 263, 835Google Scholar
Silva-Valio, A. & Lanza, A. F. 2011, AAP, 529, A36Google Scholar
Smith, J. C., Stumpe, M. C., Van Cleve, J. E., et al. 2012, PASP, 124, 1000CrossRefGoogle Scholar
Strassmeier, K. G. 2009, A&AR, 17, 251Google Scholar
Stumpe, M. C., Smith, J. C., Van Cleve, J. E., et al. 2012, PASP, 124, 985Google Scholar
Walker, G., Matthews, J., Kuschnig, R., et al. 2003, PASP, 115, 1023CrossRefGoogle Scholar
Walkowicz, L. M. & Basri, G. S. 2013, MNRAS, 436, 1883Google Scholar
Walkowicz, L. M., Basri, G., & Valenti, J. A. 2013, ApJS, 205, 17CrossRefGoogle Scholar