Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T03:25:03.893Z Has data issue: false hasContentIssue false

Strong gravitational lensing: relativity in action

Published online by Cambridge University Press:  06 January 2010

Joachim Wambsganss*
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, 69120 Heidelberg, Germany email: jkw@uni-hd.de Bohdan Paczynski Visitor, Dept. of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a “relativistic eclipse” as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Alcock, C. et al. (The MACHO collaboration), ApJ 542, 281 (2000)CrossRefGoogle Scholar
Bartelmann, M. et al. A&A 330, 1 (1998)Google Scholar
Beaulieu, J. P., Bennett, D. P., Fouque, P. et al. , Nature, 439, 437 (2006)Google Scholar
Bennett, D. P. et al. , ApJ 684, 663 (2008)Google Scholar
Bond, I. A., Udalski, A., Jaroszynski, M., Rattenbury, N. J., Paczynski, B. et al. , ApJ 606, L155 (2004)Google Scholar
Chwolson, O. Astron. Nachr. 221, 329 (1924)CrossRefGoogle Scholar
Dong, S. et al. , ApJ 698, 1826 (2009)Google Scholar
Dyson, F., Eddington, A., Davidson, C., Mem. Roy. Astr. Soc. 62, 291 (1920)Google Scholar
Eigenbrod, A. et al. Astron. Astrophys. 490, 933 (2008)CrossRefGoogle Scholar
Einstein, A., Annalen der Physik 35, 898 (1911)CrossRefGoogle Scholar
Einstein, A., Science 84, 506 (1936)CrossRefGoogle Scholar
Fohlmeister, J. et al. , ApJ, 662, 62 (2007)CrossRefGoogle Scholar
Fohlmeister, J., Kochanek, C. S., Falco, E. E., Morgan, C. W., & Wambsganss, J., ApJ, 676, 761 (2008)CrossRefGoogle Scholar
Gaudi, B. S. et al. , Science, 319, 927 (2008)Google Scholar
Gould, A., Udalski, A., An, J. et al. , ApJ, 644, L 37 (2006)CrossRefGoogle Scholar
Irwin, M. J., Webster, R. L., Hewett, P. C., Corrigan, R. T., & Jedrzejewski, R. I., ApJ 98, 1989 (1989)CrossRefGoogle Scholar
Lasserre, T. et al. (The EROS collaboration), A&A 355, L39 (2000)Google Scholar
Mao, S., Paczyński, B. ApJ 374, L37 (1991)CrossRefGoogle Scholar
Refsdal, S. MNRAS 128, 307 (1964)CrossRefGoogle Scholar
Russel, H. N. Scientific American (February 1937)Google Scholar
Schneider, P., A&A 143, 413 (1985)Google Scholar
Schneider, P., Kochanek, C. S., & Wambsganss, J. “Gravitational Lensing: Strong, Weak, Micro” (Saas-Fee Advanced Course 33, Editors Meylan, G., Jetzer, P., North, P. (Springer-Verlag, Berlin, 2006)CrossRefGoogle Scholar
Treyer, M. & Wambsganss, J. A&A, 416, 19 (2004)CrossRefGoogle Scholar
Udalski, A., Kubiak, M., & Szymanski, M. Acta Astron. 47, 319 (1997)Google Scholar
Udalski, A., Jaroszy, Å., ski, M., Paczy, Å., ski, B. et al. , ApJ, 628, L109 (2005)Google Scholar
Walsh, D., Carswell, R. F., & Weymann, R. J., Nature 279, 381 (1979)CrossRefGoogle Scholar
Wambsganss, J., Paczyński, B., & Schneider, P. ApJ 358, L33 (1990)CrossRefGoogle Scholar
Wambsganss, J. & Paczyński, B. AJ 102, 864 (1991)Google Scholar
Wambsganss, J., Bode, P. & Ostriker, J. P. ApJ 606, L93 (2004)CrossRefGoogle Scholar
Wambsganss, J., MNRAS 284, 172 (1997)CrossRefGoogle Scholar
Wambsganss, J., Living Reviews in Relativity 1998-12, http://relativity.livingreviews.org/Articles/lrr-1998-12 (1998)Google Scholar
Weinberg, S.: Gravitation and Cosmology (Wiley, New York, 1972)Google Scholar
Wozniak, P. R., Udalski, A., Szymanski, M. et al. ApJ 540, L65 (2000)CrossRefGoogle Scholar
Wyithe, J. S. B., Webster, R. L., & Turner, E. L. MNRAS 318, 762 (2000)CrossRefGoogle Scholar
Zwicky, F., Phys. Rev. 51, 290 (1937a)CrossRefGoogle Scholar
Zwicky, F., Phys. Rev. 51, 679 (1937b)CrossRefGoogle Scholar