Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-16T11:49:15.558Z Has data issue: false hasContentIssue false

Studying Supernovae under the Current Paradigm

Published online by Cambridge University Press:  27 October 2016

Chris L. Fryer*
Affiliation:
CCS-2, Los Alamos National Laboratory Los Alamos, NM 87545, USA, email: fryer@lanl.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The convection-enhanced paradigm behind core-collapse supernovae (SNe) invokes a multi-physics model where convection above the proto-neutron star is able to convert the energy released in the collapse to produce the violent explosions observed as SNe. Over the past decade, the evidence in support of this engine has grown, including constraints placed by SN neutrinos, energies, progenitors and remnants. Although considerable theoretical work remains to utilize this data, our understanding of normal SNe is advancing. To achieve a deeper level of understanding, we must find ways to compare detailed simulations with the increasing set of observational data. Here we review the current constraints and how we can apply our current understanding to broaden our understanding of these powerful engines.

Keywords

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bionta, R. M., Blewitt, G., Bratton, C. B., Casper, D., & Ciocio, A. 1987, Physical Review Letters, 58, 1494 CrossRefGoogle Scholar
Ellinger, C. I., Young, P. A., Fryer, C. L., & Rockefeller, G. 2012, ApJ, 755, 160 CrossRefGoogle Scholar
Fryer, C. L. 1999, ApJ, 522, 413 CrossRefGoogle Scholar
Fryer, C. L., Herwig, F., Hungerford, A., & Timmes, F. X. 2006, ApJl, 646, L131 CrossRefGoogle Scholar
Fryer, C. L. & Young, P. A. 2007, ApJ, 659, 1438 CrossRefGoogle Scholar
Fryer, C. L. 2009, ApJ, 699, 409 CrossRefGoogle Scholar
Fryer, C. L., Even, W., Grefenstette, B. W., & Wong, T.-W. 2014, AIP Advances, 4, 041014 CrossRefGoogle Scholar
Grefenstette, B. W., Harrison, F. A., Boggs, S. E., et al. 2014, Nature, 506, 339 CrossRefGoogle Scholar
Hamuy, M. A. 2001, Ph.D. Thesis,Google Scholar
Herant, M., Benz, W., Hix, W. R., Fryer, C. L., & Colgate, S. A. 1994, ApJ, 435, 339 CrossRefGoogle Scholar
Hirata, K., Kajita, T., Koshiba, M., Nakahata, M., & Oyama, Y. 1987, Physical Review Letters, 58, 1490 CrossRefGoogle Scholar
Hungerford, A. L., Fryer, C. L., & Rockefeller, G. 2005, ApJ, 635, 487 CrossRefGoogle Scholar
Hungerford, A. L., Fryer, C. L., & Warren, M. S. 2003, ApJ, 594, 390 CrossRefGoogle Scholar
Smartt, S. J. 2009, ARA&A, 47, 63 Google Scholar
Young, P. A. & Fryer, C. L. 2007, ApJ, 664, 1033 CrossRefGoogle Scholar
Zwicky, F. 1938, ApJ, 88, 522 CrossRefGoogle Scholar