Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T01:27:36.656Z Has data issue: false hasContentIssue false

Studying Young Stars with Large Spectroscopic Surveys

Published online by Cambridge University Press:  27 January 2016

Sarah L. Martell*
Affiliation:
School of Physics, University of New South Wales email: s.martell@unsw.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Galactic archaeology is the study of the history of star formation and chemical evolution in the Milky Way, based on present-day stellar populations. Studies of young stars are a key anchor point for Galactic archaeology, since quantities like the initial mass function and the star formation rate can be studied directly in young clusters and star forming regions. Conversely, massive spectroscopic Galactic archaeology surveys can be used as a data source for young star studies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bland-Hawthorn, J., Krumholz, M. R., & Freeman, K. 2010, ApJ, 713, 166CrossRefGoogle Scholar
Cottaar, M., Covey, K. R., Meyer, M. R.et al. 2014, ApJ, 794, 125Google Scholar
Dalton, G., Trager, S. C., Abrams, D. C.et al. 2012, Proc. SPIE, 8446, 84460PGoogle Scholar
de Jong, R. S., Bellido-Tirado, O., Chiappini, C.et al. 2012, Proc. SPIE, 8446, 84460TCrossRefGoogle Scholar
De Silva, G. M., Freeman, K. C., Bland-Hawthorn, J.et al. 2011, MNRAS, 415, 563CrossRefGoogle Scholar
De Silva, G. M., D'Orazi, V., Melo, C.et al. 2013, MNRAS, 431, 1005Google Scholar
De Silva, G. M., Freeman, K. C., Bland-Hawthorn, J.et al. 2015, MNRAS, 449, 2604Google Scholar
Feng, Y. & Krumholz, M. R. 2014, Nature, 513, 523CrossRefGoogle Scholar
Freeman, K. C. & Bland-Hawthorn, J. 2002, ARA&A, 40, 487Google Scholar
Gilmore, G., Randich, S., Asplund, M.et al. 2012, ESO Messenger, 147, 25Google Scholar
Holtzman, J. A., Shetrone, M., Johnson, J. A.et al. 2015, arXiv:1501.04110Google Scholar
Howell, S. B., Sobeck, C., Haas, M.et al. 2014, PASP, 126, 398Google Scholar
Jeffries, R. D., Jackson, R. J., Cottaar, M.et al. 2014, A&A, 563, 94Google Scholar
Lada, C. J. & Lada, E. A. 2003, ARA&A, 41, 57Google Scholar
Luo, A.-L., Zhao, Y.-H., Deng, L.-C.et al. 2015, arXiv:1505.01570Google Scholar
Malo, L., Doyon, R., Lafreniere, D.et al. 2013, ApJ, 762, 88Google Scholar
Martell, S. L. & Grebel, E. K. 2010, A&A, 519, 14Google Scholar
Martell, S. L. & Shetrone, M. D. 2013, MNRAS, 430, 611CrossRefGoogle Scholar
Martig, M., Rix, H.-W., Silva Aguirre, V.et al. 2014, MNRAS, 451, 2230Google Scholar
Mitschang, A. W., de Silva, G., Sharma, S., & Zucker, D. B. 2013, MNRAS, 428, 2321CrossRefGoogle Scholar
Mitschang, A. W., de Silva, G., Zucker, D. B.et al. 2014, MNRAS, 438, 2753CrossRefGoogle Scholar
Murphy, S. J., Lawson, W. A., & Bessell, M. S. 2010, MNRAS, 406, L50Google Scholar
Rizzuto, A. C., Ireland, M. J., & Kraus, A. L. 2015, MNRAS, 448, 2737CrossRefGoogle Scholar
Spina, L., Randich, S., Palla, F.et al. 2014, A&A, 568, 2Google Scholar
Terlevich, E. 1987, MNRAS, 224, 193Google Scholar
Ting, Y.-S., Conroy, C., & Goodman, A. 2015, ApJ, 807, 104CrossRefGoogle Scholar