Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T06:31:00.961Z Has data issue: false hasContentIssue false

Sub-THz emission from stellar flares and energy release diagnostics

Published online by Cambridge University Press:  23 December 2024

Yuriy T. Tsap*
Affiliation:
Crimen Astrophysical Observatory, Nauchny, 298409
Alexander V. Stepanov
Affiliation:
Central Astronomical Observatory at Pulkovo, St. Petersburg, 196140, Russia
Victor F. Melnikov
Affiliation:
Central Astronomical Observatory at Pulkovo, St. Petersburg, 196140, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A comparative analysis of sub-THz emission of stellar flares from red dwarfs has been carried out. ALMA observations indicate that the sub-THz emission flux from stellar flares with a duration of 10 s is an order of magnitude greater than for solar flares. The sub-THz emission is linearly polarized and decreases with frequency. The degree of polarization can reach tens of percent. We show that these types of spectrum slopes and linear polarization can be caused by the synchrotron emission of ultrarelativistic electrons. The origin of the observed relationships between sub-THz, low frequency radio, and X-ray emissions of stellar flares are discussed.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Beskin, G., Karpov, S., Plokhotnichenko, V., Stepanov, A., & Tsap, Yu. 2017, PASA, 34, id.e010.Google Scholar
Davenport, J.R.A., Kipping, D.M., Sasselov, D., Matthews, J.M., & Cameron, C. 2016, ApJ, 829, L31.CrossRefGoogle Scholar
Gershberg, R.E. 2005, Solar-Type Activity in Main-Sequence Stars (Springer Berlin, Heidelberg)Google Scholar
Ginzburg, V.L. & Syrovatskii, S.I. The Origin of Cosmic Rays (Pergamon, Oxford–New York).Google Scholar
Howard, W.S., MacGregor, M.A., Osten, R, Forbrich, J., Cranmer, S.R. et al. 2022, ApJ, 938, 103.CrossRefGoogle Scholar
Kaufmann, P., Correia, E., Costa, J.E.R., & Zodi Vaz, A.M. 1986, A&A, 157, 11.Google Scholar
Kaufmann, P., Raulin, J.-P., Correia, E., Costa, J.E.R., Guillermo, C., de Castro, Giménez, Silva, A.V.R., Levato, H., Rovira, M., Mandrini, C., Fernández-Borda, R., & Bauer, O. 2001, IAU Symp., 203, 283.Google Scholar
MacGregor, M.A., Weinberger, A.J. Wilner, D.J., Kowalski, A.F., & Cranmer, S.R. 2018, ApJ, 855, L2.Google Scholar
MacGregor, M.A., Weinberger, A.J., Loyd, R.O., Shkolnik, E. Barclay, T. et al., 2021, ApJ, 911, L25.CrossRefGoogle Scholar
Smirnova, V.V., Tsap, Yu. T., Morgachev, A.S., Motorina, G.G, & Bárta, M. 2021, Geomagnetism and Aeronomy, 61, 993.CrossRefGoogle Scholar
Tsap, Yu.T., Stepanov, A.V. & Kopylova, Yu.G. 2023, Geomagnetism and Aeronomy, 63, 937.Google Scholar
Wandel, A. & Gale, J. 2020, Iternational J. Astrobiology, 19, 126.CrossRefGoogle Scholar