No CrossRef data available.
Published online by Cambridge University Press: 06 January 2014
The magnetic breakout model has been widely used to explain solar eruptive activities. Here, we apply it to explain successive filament eruptions occurred in a quadrupolar magnetic source region. Based on the high temporal and spatial resolution, multi-wavelengths observations taken by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO), we find some signatures that support the occurrence of breakout-like external reconnection just before the start of the successive filament eruptions. Furthermore, the extrapolated three-dimensional coronal field also reveals that the magnetic topology above the quadrupolar source region resembles that of the breakout model. We propose a possible mechanism within the framework of the breakout model to interpret the successive filament eruptions, in which the so-called magnetic implosion mechanism is firstly introduced to be the physical linkage of successive filament eruptions. We conclude that the structural properties of coronal fields are important for producing successive filament eruptions.