Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T04:04:51.623Z Has data issue: false hasContentIssue false

Supernova Optical Observations and Theory

Published online by Cambridge University Press:  29 January 2014

Keiichi Maeda
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan email: keiichi.maeda@ipmu.jp
Melina C. Bersten
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan email: keiichi.maeda@ipmu.jp
Takashi J. Moriya
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan email: keiichi.maeda@ipmu.jp
Gaston Folatelli
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan email: keiichi.maeda@ipmu.jp
Ken'ichi Nomoto
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan email: keiichi.maeda@ipmu.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review emission processes within the supernova (SN) ejecta. Examples of the application of the theory to observational data are presented. The emission processes and thermal condition within the SN ejecta change as a function of time, and multi-epoch observations are important to obtain comprehensive views. Through the analyses, we can constrain the progenitor radius, compositions as a function of depth, ejecta properties, explosion asymmetry and so on. Multi-frequency follow-up is also important, including radio synchrotron emissions and the inverse Compton effect, γ-ray emissions from radioactive decay of newly synthesized materials. The optical data are essential to make the best use of the multi-frequency data.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Benetti, S., et al. 2005, ApJ, 623, 1011CrossRefGoogle Scholar
Bersten, M. C., et al. 2012, ApJ, 757, 31Google Scholar
Cartier, R., et al. 2011, A&A, 534, L15Google Scholar
Filippenko, A. V. 1997, ARAA, 35, 309Google Scholar
Folatelli, G., et al. 2010, AJ, 139, 120Google Scholar
Folatelli, G., et al. 2012, ApJ, 745, 74Google Scholar
Galama, T. J., et al. 1998, Nature, 395, 670Google Scholar
Hjorth, J., et al. 2003, Nature, 423, 847CrossRefGoogle Scholar
Iwamoto, K., et al. 1998, Nature, 395, 672Google Scholar
Kasen, D. & Bildsten, I. 2010, ApJ, 717, 245Google Scholar
Kawabata, K. S., et al. 2010, Nature, 465, 326Google Scholar
Leloudas, G., et al. 2012, A&A, 541, L129Google Scholar
Maeda, K., et al. 2002, ApJ, 565, 405Google Scholar
Maeda, K., et al. 2006, ApJ, 640, 854Google Scholar
Maeda, K., et al. 2007a, ApJ, 666, 1069Google Scholar
Maeda, K., et al. 2007b, ApJ, 658, L5Google Scholar
Maeda, K., et al. 2008, Science, 319, 1220Google Scholar
Maeda, K., et al. 2010a, ApJ, 708, 1703CrossRefGoogle Scholar
Maeda, K., et al. 2010b, ApJ, 712, 624Google Scholar
Maeda, K., et al. 2010c, Nature, 466, 82Google Scholar
Maeda, K., et al. 2011, MNRAS, 413, 3075Google Scholar
Maeda, K. 2012a, ApJ, 758, 81Google Scholar
Maeda, K., et al. 2012b, ApJ, 760, 54Google Scholar
Maeda, K. 2013a, ApJ, 762, 14Google Scholar
Maeda, K. 2013b, ApJ, 762, L24CrossRefGoogle Scholar
Maund, J. R., et al. 2011, ApJ, 739, L37Google Scholar
Moriya, T. J. & Maeda, K. 2012, ApJ, 756, L22Google Scholar
Moriya, T. J., et al. 2013, MNRAS, 428, 1020Google Scholar
Nomoto, K., Thielemann, F.-K., & Yokoi, K. 1984, ApJ, 286, 644Google Scholar
Nomoto, K., Iwamoto, K., & Suzuki, T. 1995, Phys. Rep., 256, 173Google Scholar
Nugent, P., et al. 2011, Nature, 480, 344Google Scholar
Parets, H. B., et al. 2010, Nature, 465, 322CrossRefGoogle Scholar
Parrent, J. T., et al. 2011, ApJ, 732, 30Google Scholar
Pian, E., et al. 2006, Nature, 442, 1011Google Scholar
Stehle, M., et al. 2006, MNRAS, 360, 1231Google Scholar
Tanaka, M., et al. 2011, MNRAS, 410, 1725CrossRefGoogle Scholar
Van Dyk, S. D., et al. 2011, ApJ, 741, L28Google Scholar
Van Dyk, S. D., et al. 2013, ATEL, 4850Google Scholar
Wang, X., et al. 2013, Science, 340, 170Google Scholar
Woosley, S. E. & Weaver, T. A. 1986, ARAA, 24, 205Google Scholar