Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:04:56.309Z Has data issue: false hasContentIssue false

Supernova Yields for Chemical Evolution Modeling

Published online by Cambridge University Press:  06 January 2014

Ken'ichi Nomoto
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe (WPI) The University of Tokyo, Kashiwa, Chiba 277-8583, Japan email: nomoto@astron.s.u-tokyo.ac.jp
Tomoharu Suzuki
Affiliation:
College of Engineering, Chubu University, Kasugai, Aichi 487-8501, Japan email: tsuzuki@isc.chubu.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the recent results of the nucleosynthesis yields of massive stars. We examine how those yields are affected by some hydrodynamical effects during the supernova explosions, namely, explosion energies from those of hypernovae to faint supernovae, mixing and fallback of processed materials, asphericity, etc. Those parameters in the supernova nucleosynthesis models are constrained from observational data of supernovae and metal-poor stars. The elemental abundance patterns observed in extremely metal-poor stars show some peculiarities relative to the solar abundance pattern, which suggests the important contributions of hypernovae and faint supernovae in the early chemical enrichment of galaxies. These constraints on supernova nucleosynthesis are taken into account in the latest yield table for chemical evolution modeling.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Aoki, W., Norris, J. E., Ryan, S. G., et al. 2004, ApJ, 608, 971Google Scholar
Arnett, W. D., Bahcall, J. N., Kirshner, R. P., & Woosley, S. E. 1989, ARAA, 27, 629CrossRefGoogle Scholar
Barkat, Z., Rakavy, G., & Sack, N. 1967, Phys. Rev. Letters, 18, 379Google Scholar
Beers, T. C. & Christlieb, N. 2005, ARAA, 43, 531CrossRefGoogle Scholar
Bufano, F., et al. 2012, ApJ, 753, 67CrossRefGoogle Scholar
Caffau, E., et al. 2011, Nature, 477, 67Google Scholar
Cayrel, R., et al. 2004, A&A, 416, 1117Google Scholar
Christlieb, N., et al. 2002, Nature, 419, 904Google Scholar
Collet, R., Asplund, M., & Trampedach, R. 2006, ApJ, 644, L121Google Scholar
Frebel, A., et al. 2005, Nature, 434, 871CrossRefGoogle Scholar
Hashimoto, M., Nomoto, K., & Shigeyama, T. 1989, A&A, 210, L5Google Scholar
Heger, A. & Langer, N. 2000, ApJ, 544, 1016Google Scholar
Heger, A. & Woosley, S. E. 2002, ApJ, 567, 532Google Scholar
Heger, A. & Woosley, S. E. 2010, ApJ, 724, 341Google Scholar
Iwamoto, N., Umeda, H., Tominaga, N., Nomoto, K., & Maeda, K., 2005, Science, 309, 451Google Scholar
Jones, S, Hirschi, R., Nomoto, K., et al. 2013, ApJ, 772, 150CrossRefGoogle Scholar
Kawabata, K., Maeda, K., Nomoto, K., et al. 2010, Nature, 465, 326Google Scholar
Kitaura, F. S., Janka, H.-Th., & Hillebrandt, W. 2006, A&A, 450, 345Google Scholar
Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N., & Ohkubo, T. 2006, ApJ, 653, 1145Google Scholar
Kobayashi, C., Karakas, I. A., & Umeda, H. 2011, MNRAS, 414, 3231Google Scholar
Limongi, M. & Chieffi, A. 2006, ApJ, 647, 483Google Scholar
Limongi, M. & Chieffi, A. 2012, ApJS, 199, 38Google Scholar
Maeder, A. & Meynet, G. 2000, ARAA, 38, 143Google Scholar
Melandri, A., et al. 2012, A&A, 547, 82Google Scholar
Moriya, T., Tominaga, N., Tanaka, M., Maeda, K., & Nomoto, K. 2010, ApJ, 717, 83Google Scholar
Müller, B., Janka, T., & Heger, A. 2012, ApJ, 761, 72Google Scholar
Nakamura, T., Umeda, H., Iwamoto, K., Nomoto, K., et al. 2001, ApJ, 555, 880Google Scholar
Nomoto, K, Sparks, W., Fesen, R., Gull, T., Miyaji, S., Sugimoto, D. 1982, Nature, 299, 803Google Scholar
Nomoto, K. 1987, ApJ, 322, 206Google Scholar
Nomoto, K. & Hashimoto, M. 1988, Phys. Rep., 163, 13Google Scholar
Nomoto, K., Hashimoto, M., Tsujimoto, T., et al. 1997, Nuclear Phys., A616, 79cGoogle Scholar
Nomoto, K., Mazzali, P. A., Nakamura, T., et al. 2001, in Supernovae and Gamma Ray Bursts, eds. Livio, M.et al. (Cambridge Univ. Press) 144 (astro-ph/0003077)Google Scholar
Nomoto, K., et al. 2003, in IAU Symp. 212, A Massive Star Odyssey, from Main Sequence to Supernova, eds. Hucht, V. D.et al. (San Francisco: ASP) 395 (astro-ph/0209064)Google Scholar
Nomoto, K., Tominaga, N., Umeda, H., Kobayashi, C., & Maeda, K. 2006, Nuclear Phys., A777, 424Google Scholar
Nomoto, K. 2012, in IAU Symp. 279, Death of Massive Stars: Supernovae and Gamma-Ray Bursts, ed. Kawai, N.et al. (Cambridge: Cambridge Univ. Press) 1Google Scholar
Nomoto, K., Kobayashi, C., & Tominaga, N. 2013, ARAA, 51, 457Google Scholar
Ohkubo, T., Umeda, H., Maeda, K., Nomoto, K., Suzuki, T., Tsuruta, S., & Rees, M. J. 2006, ApJ, 645, 1352Google Scholar
Ohkubo, T., Nomoto, K., Umeda, H., Yoshida, N., & Tsuruta, S., 2009, ApJ, 706, 1184Google Scholar
Portinari, L., Chiosi, C., & Bressan, A. 1998, A&A, 334, 505Google Scholar
Ritter, J., Safranek-Shrader, C., Gnat, O., Milosavljevic, M., & Bromm, V. 2012, ApJ, 761, 56CrossRefGoogle Scholar
Romano, D., Karakas, A. I., Tosi, M., & Matteucci, F. 2010, A&A, 522, 32Google Scholar
Smartt, S. J. 2009, ARAA, 47, 63Google Scholar
Suda, T., Aikawa, M., Machida, M. N., Fujimoto, M. Y., & Iben, I. Jr. 2004, ApJ, 611, 476Google Scholar
Thielemann, F.-K., Nomoto, K., & Hashimoto, M. 1996, ApJ, 460, 408Google Scholar
Timmes, F. X., Woosley, S. E., & Weaver, T. A. 1995, ApJS, 98, 617Google Scholar
Tominaga, N., Maeda, K., Umeda, H., Nomoto, K., Tanaka, M., Iwamoto, N., Suzuki, T., & Mazzali, P. A. 2007a, ApJ, 657, L77Google Scholar
Tominaga, N., Umeda, H., & Nomoto, K. 2007b, ApJ, 660, 516Google Scholar
Tominaga, N., Blinnikov, S., & Nomoto, K. 2013a, ApJ, 771, L12Google Scholar
Tominaga, N., Iwamoto, N., & Nomoto, K. 2013b, ApJ, submittedGoogle Scholar
Turatto, M., Mazzali, P. A., Young, T., Nomoto, K., et al. 1998, ApJ, 498, L129Google Scholar
Umeda, H., Nomoto, K., & Nakamura, T. 2000, in The First Stars, ed. Weiss, A., Abel, T., & Hill, V. (Berlin: Springer), 150Google Scholar
Umeda, H. & Nomoto, K. 2002, ApJ, 565, 385Google Scholar
Umeda, H., Nomoto, K., Tsuru, T., & Matsumoto, H. 2002, ApJ, 578, 855Google Scholar
Umeda, H. & Nomoto, K. 2003, Nature, 422, 871Google Scholar
Umeda, H. & Nomoto, K. 2008, ApJ, 673, 1014Google Scholar
Wanajo, S., Nomoto, K., Janka, H.-T., Kitaura, F. S., & Müller, B. 2009, ApJ, 695, 208Google Scholar
Wanajo, S., Janka, H.-T., & Müller, B. 2013, ApJ (Letters), 767, L26Google Scholar
Weiss, A., Serenelli, A., Kitsikis, A., Schlattl, H., Christensen-Dalsgaard, J. 2005, A&A, 441, 1129Google Scholar
Woosley, S. E., Langer, N., & Weaver, T. A. 1993, ApJ, 411, 823Google Scholar
Woosley, S. E. & Weaver, T. A. 1995, ApJS, 101, 181 (WW95)Google Scholar
Woosley, S. E. & Bloom, J. S. 2006, ARAA, 44, 507Google Scholar
Woosley, S. E., Blinnikov, S., & Heger, A. 2007, Nature, 450, 390Google Scholar