Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T05:10:21.920Z Has data issue: false hasContentIssue false

The surface composition of Enceladus: clues from the Ultraviolet

Published online by Cambridge University Press:  06 April 2010

Amanda R. Hendrix
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
Candice J. Hansen
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The reflectance of Saturn's moon Enceladus has been measured at far ultraviolet (FUV) wavelengths (115–190 nm) by Cassini's UltraViolet Imaging Spectrograph (UVIS). At visible and near infrared (VNIR) wavelengths Enceladus' reflectance spectrum is very bright, consistent with a surface composed primarily of H2O ice. At FUV wavelengths, however, Enceladus is surprisingly dark – darker than would be expected for pure water ice. We find that the low FUV reflectance of Enceladus can be explained by the presence of a small amount of NH3 and a small amount of a tholin in addition to H2O ice on the surface.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Brown, R. H. et al. 2006, Science, 311, 1425CrossRefGoogle Scholar
Buratti, B. 1984, Icarus, 59, 392Google Scholar
Buratti, B. J., Mosher, J. A., & Johnson, T. V. 1990, Icarus, 87, 339Google Scholar
Buratti, B. J. & Veverka, J. 1984, Icarus, 58, 254Google Scholar
Clark, R. N., Brown, R. H., Owensby, P. D., & Steele, A. 1984, Icarus, 58, 265Google Scholar
Clark, R. N., Curchin, J. M., Jaumann, R., Cruikshank, D. P., Brown, R. H., Hoefen, T. M., Stephan, K., Moore, J. M., Buratti, B. J., Baines, K. H., Nicholson, P. D., & Nelson, R. M. 2008, Icarus, 193, 372Google Scholar
Cruikshank, D. P. 1980, Icarus, 41, 246CrossRefGoogle Scholar
Cruikshank, D. P., Owen, T. C., Dalle Ore, C., Geballe, T. R., Roush, T. L., de Bergh, C.Sandford, S. A., Poulet, F., Benedix, G. K., & Emery, J. P. 2005, Icarus, 175, 268CrossRefGoogle Scholar
Dougherty, M. K., Khurana, K. K., Neubauer, F. M., Russell, C. T., Saur, J., Leisner, J. S., & Burton, M. E. 2006, Science, 311, 1406Google Scholar
Emery, J. P., Burr, D. M., Cruikshank, D. P., Brown, R. H., & Dalton, J. B. 2005, A&A, 435, 353Google Scholar
Esposito, L. W. et al. 2004. Space Sci. Rev., 115, 299Google Scholar
Fink, U., Larson, H. P., Gautier, T. N. III., & Treffers, R. R. 1976, ApJ, 207, L63CrossRefGoogle Scholar
Grundy, W. M., Buie, M. W., Stansberry, J. A., & Spencer, J. R. 1999, Icarus, 142, 536CrossRefGoogle Scholar
Hamilton, D. P. & Burns, J. A. 1994, Science, 264, 550CrossRefGoogle Scholar
Hansen, C. J., Esposito, L., Stewart, A. I. F., Colwell, J., Hendrix, A., Pryor, W., Shemansky, D., & West, R. 2006, Science, 311, 1422Google Scholar
Hapke, B. W. 2002, Icarus 157, 523CrossRefGoogle Scholar
Hendrix, A. R. & Hansen, C. J. 2008, Icarus, 193, 323Google Scholar
McClintock, W. E., Rottman, G. J., & Woods, T. N. 2000, Earth Observing System V, Proceedings of the SPIE, 4135, 225Google Scholar
McCord, T. B., Johnson, T. V., & Elias, J. H. 1971, ApJ, 165, 413Google Scholar
Morrison, D., Cruikshank, D. P., Pilcher, C. B., & Rieke, G. H. 1976, ApJ, 207, L213CrossRefGoogle Scholar
Porco, C. C. et al. 2006, Science, 311, 1393Google Scholar
Shibaguchi, T., Onuki, H., & Onaka, R. 1977, J. Phys. Soc. Jpn., 42, 152Google Scholar
Spencer, J. R., Pearl, J. C., Segura, M., Flasar, F. M., Mamoutkine, A., Romani, P., Buratti, B. J., Hendrix, A. R., Spilker, L. J., & Lopes, R. M. C. 2006, Science, 311, 1401CrossRefGoogle Scholar
Verbiscer, A. J., French, R. G., & McGhee, C. A. 2005, Icarus, 173, 66CrossRefGoogle Scholar
Verbiscer, A. J., Peterson, D. E., Skrutskie, M. F., Cushing, M., Helfenstein, P., Nelson, M. J., Smith, J. D., & Wilson, J. C. 2006, Icarus, 182, 211CrossRefGoogle Scholar
Verbiscer, A., French, R., Showalter, M., & Helfenstein, P. 2007, Science, 315, 815Google Scholar
Waite, J. H., Combi, M. R., Ip, W.-H., Cravens, T. E., McNutt, R. L. Jr., Kasprzak, W., Yelle, R., Luhmann, J., Niemann, H., Gell, D., Magee, B., Fletcher, G., Lunine, J., & Tseng, W.-L. 2006, Science, 311, 1419Google Scholar
Waite, J. H. Jr., Lewis, W. S., Magee, B. A., Lunine, J. I., McKinnon, W. B., Glein, C. R., Mousis, O., Young, D. T., Brockwell, T., Westlake, J., Nguyen, M.-J., Teolis, B. D., Niemann, H. B., McNutt, R. L. Jr., Perry, M., & Ip, W.-H. 2009, Nature, 460, 487CrossRefGoogle Scholar
Warren, S. G. 1984, Appl. Optics, 23, 1206CrossRefGoogle Scholar
Warren, S. G. & Brandt, R. E. 2008, J. Geophys. Res., 113, D14220, doi: 10.1029/2007JD009744Google Scholar