Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-11T12:14:57.607Z Has data issue: false hasContentIssue false

Testing gravity theories in the radiative regime using pulsar timing arrays

Published online by Cambridge University Press:  20 March 2013

K. J. Lee*
Affiliation:
Max-Planck-Institut für Radioastronomie, Bonn 53121, Germany email: kjlee007@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

General relativity has predicted the existence of gravitational waves (GW), which are waves of the distortions of space-time with two degrees of polarization and the propagation speed of light. Alternative theories predict more polarizations, up to a maximum of six, and possible frequency dependent propagation speed from the light speed. The polarization and dispersion properties of GWs shed light on the spin and mass information of gravitons. Although GWs have not been directly detected yet, their amplitude upper-bounds has been addressed by research using different types of detectors. For example, the amplitude upper-bounds for the stochastic background derived from pulsar timing observations have already become astrophysically interesting. The present paper reviews proposals to test the gravity theories in the radiation regime by observing GWs using pulsar timing arrays. We also present the estimation for the upper-bounds on the amplitude of alternative modes for the stochastic background of GW.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Alves, M. E. D. S. & Tinto, M., 2011 Phys. Rev. D 83 83l3529.Google Scholar
Chamberlin, S. J. & Siemens, X., 2012 Phys. Rev. D 85 082001.Google Scholar
Jenet, F. A., Hobbs, G. B., Lee, K. J., & Manchester, R. N., 2005 ApJL 625, L123L126.CrossRefGoogle Scholar
Jenet, F. A., et al., 2006 ApJ, 653, 1571.Google Scholar
Hellings, R. W. & Downs, G. S., 1983 ApJL 265, L39L42.CrossRefGoogle Scholar
Lee, K. J., Jenet, F. A., & Price, R. H., 2008 ApJ 685, 13041319.Google Scholar
Lee, K., Jenet, F. A., Price, R. H., Wex, N., & Kramer, M., 2010 ApJ 722, 15891597.CrossRefGoogle Scholar
Baskaran, D., Polnarev, A. G., Pshirkov, M. S., & Postnov, K. A., 2008 PRD 78, 044018.Google Scholar
Maggiore, M., 2000 Phys. Rep. 331, 283367.Google Scholar
Stappers, B., Vlemmings, W., & Kramer, M., 2009 “Pulsars, e-VLBI, & LEAP (invited)”, in Proceedings of the 8th International e-VLBI Workshop. 22-26 June 2009. Madrid, Spain, p. 20.Google Scholar
Nan, R., Wang, Q., Zhu, L., Zhu, W., Jin, C., & Gan, H., 2006 Chinese Journal of Astronomy & Astrophysics Supplement 6, 020000–310.Google Scholar
Smits, R., Lorimer, D. R., Kramer, M., Manchester, R., Stappers, B., Jin, C. J., Nan, R. D. & Li, D., 2009 A&A 505, 919926.Google Scholar