Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T15:51:29.640Z Has data issue: false hasContentIssue false

Testing models of rotating stars

Published online by Cambridge University Press:  12 July 2011

Adrian T. Potter
Affiliation:
Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 0HA, England email: apotter@ast.cam.ac.uk
Christopher A. Tout
Affiliation:
Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 0HA, England email: apotter@ast.cam.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of rapid rotation on stellar evolution can be profound but we are only now starting to gather the data necessary to adequately determine the validity of the many proposed models of rotating stars. Some aspects of stellar rotation, particularly the treatment of angular momentum transport within convective zones, still remain very poorly explored. Distinguishing between different models is made difficult by the typically large number of free parameters in models compared with the amount of available data. This also makes it difficult to determine whether increasing the complexity of a model actually results in a better reflection of reality. We present a new code to straightforwardly compare different rotating stellar models using otherwise identical input physics. We use it to compare several models with different treatments for the transport of angular momentum within convective zones.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Arnett, W. D. & Meakin, C. 2009, in: Cunha, K., Spite, M., & Barbuy, B. (eds.), Chemical Abundances in the Universe: Connecting First Stars to Planets, IAU Symposium 265, p. 106Google Scholar
Eggleton, P. P. 1971, MNRAS, 151, 351Google Scholar
Endal, A. S. & Sofia, S. 1976, ApJ, 210, 184CrossRefGoogle Scholar
Evans, C. J., Smartt, S. J., Lee, J.-K., Lennon, D. J. et al. 2005, A&A, 437, 467Google Scholar
Evans, C. J., Lennon, D. J., Smartt, S. J., & Trundle, C. 2006, A&A, 456, 623Google Scholar
Heger, A., Langer, N., & Woosley, S. E. 2000, ApJ, 528, 368Google Scholar
Hunter, I., Brott, I., Langer, N., Lennon, D. J. et al. 2009, A&A, 496, 841Google Scholar
Izzard, R. G., Glebbeek, E., Stancliffe, R. J., & Pols, O. R. 2009, A&A, 508, 1359Google Scholar
Lesaffre, P., Chitre, S. M., Tout, C. A., & Potter, A. T., 2010, private communicationGoogle Scholar
Maeder, A. 2003, A&A, 399, 263Google Scholar
Meynet, G. & Maeder, A. 2000, A&A, 361, 101Google Scholar
Pols, O. R., Tout, C. A., Eggleton, P. P., & Han, Z. 1995, MNRAS, 274, 964Google Scholar
Schou, J., Antia, H. M., Basu, S., Bogart, R. S. et al. 1998, ApJ, 505, 390CrossRefGoogle Scholar
Spruit, H. C. 1999, A&A, 349, 189Google Scholar
Stancliffe, R. J., & Eldridge, J. J. 2009, MNRAS, 396, 1699CrossRefGoogle Scholar
Sweet, P. A. 1950, MNRAS, 110, 548CrossRefGoogle Scholar
Talon, S., Zahn, J.-P., Maeder, A., & Meynet, G. 1997, A&A 322, 209Google Scholar
Tassoul, J.-L. 1978, Theory of rotating stars, Princeton Series in Astrophysics, Princeton: University PressGoogle Scholar
von Zeipel, H. 1924, MNRAS, 84, 665CrossRefGoogle Scholar
Zahn, J.-P. 1992, A&A, 265, 115Google Scholar