Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T06:48:03.015Z Has data issue: false hasContentIssue false

TeV cosmic-ray electrons from millisecond pulsars

Published online by Cambridge University Press:  20 March 2013

Shota Kisaka
Affiliation:
Institute for Cosmic Ray Research, University of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa-shi, Chiba, Japan email: kisaka@icrr.u-tokyo.ac.jp
Norita Kawanaka
Affiliation:
Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel email: norita@phys.huji.ac.il
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent γ-ray observations by the Fermi Gamma-Ray Space Telescope suggest that the γ-ray millisecond pulsar (MSP) population is separated into two subclasses with respect to pair multiplicity. Here, we calculate the cosmic-ray electron/positron spectra from MSPs. Based on the assumption of equipartition in the pulsar-wind region, the typical energy of electrons/positrons ejected by an MSP with pair multiplicity of the order of unity is ~50 TeV. In this case, we find that a large peak in the 10-50 TeV energy range would be observed in the cosmic-ray electron/positron spectrum. Even if the fraction of pair-starved MSPs is 10%, a large peak would be detectable with future missions such as CALET and CTA.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Ackermann, M., et al. 2010, Phys. Rev. D, 82, 092004Google Scholar
Aharonian, F. A., et al. 2008, Phys. Rev. Lett., 101, 261104CrossRefGoogle Scholar
Aharonian, F. A., et al. 2009, A&A, 508, 561Google Scholar
Chang, J., et al. 2008, Nature, 456, 362CrossRefGoogle Scholar
CTA Consortium 2010, preprint, (arXiv:1008.3703)Google Scholar
Goldreich, P. & Julian, W. H. 1969, ApJ, 157, 869Google Scholar
Kashiyama, K., Ioka, K., & Kawanaka, N. 2011, Phys. Rev. D, 83, 023002CrossRefGoogle Scholar
Kawanaka, N., Ioka, K., & Nojiri, M. M. 2010, ApJ, 710, 958CrossRefGoogle Scholar
Kawanaka, N., Ioka, K., Ohira, Y., & Kashiyama, K. 2011, ApJ, 729, 93CrossRefGoogle Scholar
Kisaka, S. & Kawanaka, N. 2012, MNRAS, 421, 3543Google Scholar
Kistler, M. D. & Yúksel, H. 2009, preprint, (arXiv:0912.0264)Google Scholar
Kobayashi, T., Komori, Y., Yoshida, K., & Nishinuma, J. 2004, ApJ, 601, 340Google Scholar
Muslimov, A. G. & Harding, A. K. 2004b, ApJ, 617, 471CrossRefGoogle Scholar
Nolan, P. L., et al. 2012, ApJS, 199, 31Google Scholar
Torii, S., et al. 2008a, J. Phys. Conf. Ser., 120, 062020Google Scholar
Torii, S., et al. 2008b, preprint, (arXiv:0809.0760)Google Scholar
Venter, C., Harding, A. K., & Guillemot, L. 2009, ApJ, 707, 800Google Scholar