Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T09:06:19.608Z Has data issue: false hasContentIssue false

Theoretical Electronic and Rovibrational Studies for Anions of Interest to the DIBs

Published online by Cambridge University Press:  21 February 2014

R. C. Fortenberry*
Affiliation:
NASA Ames Research Center, Moffet Field, CA 94035, USA email: ryan.c.fortenberry@nasa.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dipole-bound excited state of the methylene nitrile anion (CH2CN) has been suggested as a candidate carrier for a diffuse interstellar band (DIB) at 803.8 nm. Its corresponding radical has been detected in the interstellar medium (ISM), making the existence for the anion possible. This work applies state-of-the-art ab initio methods such as coupled cluster theory to reproduce accurately the electronic excitations for CH2CN and the similar methylene enolate anion, CH2CHO. This same approach has been employed to indicate that 19 other anions may possess electronically excited states, five of which are valence in nature. Concurrently, in order to assist in the detection of these anions in the ISM, work has also been directed towards predicting vibrational frequencies and spectroscopic constants for these anions through the use of quartic force fields (QFFs). Theoretical rovibrational work on anions has thus far included studies of CH2CN, C3H, and is currently ongoing for similar systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Cordiner, M. A. & Sarre, P. J. 2007, A&A, 472, 537Google Scholar
Fermi, E. & Teller, E. 1947, Phys. Rev., 72, 399Google Scholar
Fortenberry, R. C. 2013, Mol. Phys., in press (arXiv:1308.2916)Google Scholar
Fortenberry, R. C., & Crawford, T. D. 2011a JPCA, 115, 8119Google Scholar
Fortenberry, R. C., & Crawford, T. D. 2011b JChPh, 134, 154304Google Scholar
Fortenberry, R. C., Crawford, T. D., & Lee, T. J. 2013a ApJ, 762, 121CrossRefGoogle Scholar
Fortenberry, R. C., Huang, X., Crawford, T. D., Lee, T. J., 2013b, ApJ, 772, 39CrossRefGoogle Scholar
Fortenberry, R. C., Huang, X., Francisco, J. S., Crawford, T. D., & Lee, T. J. 2011 JChPh, 135, 134301Google Scholar
Fortenberry, R. C., Huang, X., Francisco, J. S., Crawford, T. D., & Lee, T. J. 2012 JChPh, 136, 234309Google Scholar
Geballe, T. R., Najarro, F., Figer, D. F., Schlegelmilch, B. W., & de la Fuente, D. 2011 Nature, 479, 200CrossRefGoogle Scholar
Gutsev, G. & Adamowicz, A. 1995, ChPhL, 246, 245Google Scholar
Huang, X., Fortenberry, R. C., & Lee, T. J. 2013a, JChPh, 139, 084313Google Scholar
Huang, X., Fortenberry, R. C., & Lee, T. J. 2013b, ApJL, 768, 25Google Scholar
Huang, X. & Lee, T. J. 2008, JChPh, 129, 044312Google Scholar
Huang, X., Taylor, P. R., & Lee, T. J. 2011, JPCA, 115, 5005Google Scholar
Lykke, K. R., Neumark, D. M., Andersen, T., Trapa, V. J., & Lineberger, W. C. 1987, J. Chem. Phys., 87, 6842Google Scholar
McCall, B. J., Thorburn, J., Hobbs, L. M., Oka, T., & York, D. G. 2001, ApJL, 559, 49Google Scholar
Mullin, A. S., Murray, K. K., Schulz, C. P., Szaflarski, D. M., & Lineberger, W. C. 1992, Chem. Phys., 166, 207CrossRefGoogle Scholar
Sarre, P. J. 2000, MNRAS, 313, L14Google Scholar
Simons, J. 2008, JPCA, 112, 6401CrossRefGoogle Scholar
Tulej, M., Kirkwood, D. A., Pachkov, M., & Maier, J. P. 1998, ApJL, 506, 69Google Scholar