Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T18:56:22.422Z Has data issue: false hasContentIssue false

Thermohaline Convection in Main Sequence Stars

Published online by Cambridge University Press:  01 April 2008

S. Vauclair*
Affiliation:
Laboratoire d'Astrophysique de Toulouse-Tarbes, Université de Toulouse, CNRS, 14 av. E. Belin, 31400 Toulouse, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thermohaline convection is a well known subject in oceanography, which has long been put aside in stellar physics. In the ocean, it occurs when warm salted layers sit on top of cool and less salted ones. Then the salted water rapidly diffuses downwards even in the presence of stabilizing temperature gradients, due to double diffusion between the falling blobs and their surroundings. A similar process may occur in stars in case of inverse μ-gradients in a thermally stabilized medium. Here we describe this process and some of its stellar applications.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Abrams, Z. & Iben, I. Jr., 1970, ApJ, 162, L125CrossRefGoogle Scholar
Balmforth, N. J., Cunha, M. S., Dolez, N., Gough, D. O., & Vauclair, S. 2001, MNRAS, 23, 362CrossRefGoogle Scholar
Canuto, V. M., Cheng, Y., & Howard, A. M. 2008, Geophys. Res. Let., 35, 2, L02613CrossRefGoogle Scholar
Charbonnel, C. & Zahn, J.-P. 2007b, A&A, 476, L29Google Scholar
Charbonnel, C. & Zahn, J.-P. 2007a, A&A, 467, L15Google Scholar
charpinet, S., Fontaine, G., Brassard, P., & Dorman, B. 1996, ApJ, 471, L103CrossRefGoogle Scholar
Eggleton, P. P., Dearborn, D. S. P., & Lattansio, J. C. 2006, Science, 314, 1580CrossRefGoogle Scholar
Gargett, A. & Ruddick, B. 2003, ed., Progress in Oceanography, vol 56CrossRefGoogle Scholar
Kippenhahn, R., Ruschenplatt, G., & Thomas, H. C. 1980, A&A, 91, 175Google Scholar
Richard, O., Michaud, G., & Richer, J. 2001, ApJ, 558, 377CrossRefGoogle Scholar
Stancliffe, R. J., Glenneck, E., Izzard, R. G., & Pold, O. R. 2007, A&A, 464, L57Google Scholar
Stothers, R., & Simon, N. R. 1969, ApJ, 157, 673CrossRefGoogle Scholar
Thompson, I. B., Ivans, I. I., Bisterzo, S., Sneden, C., Gallino, R., Vauclair, S., Burkey, G. S., Shectman, S. A., & Preston, G. W. 2008, ApJ, 667, 556CrossRefGoogle Scholar
Ulrich, R. K. 1971, ApJ, 168, 57CrossRefGoogle Scholar
Ulrich, R. K. 1972, ApJ, 172, 165CrossRefGoogle Scholar
Vauclair, S. 1975, A&A, 45, 233Google Scholar
Vauclair, S., Dolez, N., & Gough, D. O. 1991, A&A, 252, 618Google Scholar
Vauclair, S. 2004, ApJ, 605, 874CrossRefGoogle Scholar